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I. QUASI-NEWTON ALGORITHMS FOR CONSTRAINED NONLINEAR PROGRAMMING

(M. S. Bazaraa)

I.1 Introduction

Nonlinear programming has long been of interest to mathematicians,

engineers, and management scientists. Recent developments in the field

of nonlinear programming, especially these related to computing a search

direction and to computing a stepsize, and the advent of the high-speed

and large-memory computers have made it possible to numerically solve

nonlinear programming problems of great complexity. This capability has

not only motivated immense research in the development of nonlinear pro-

gramming methods, but also expanded its applications to problems in

optimal control, optimal design, nonlinear networks, chemical processing,

refinery operations and water resources management.

The study of nonlinear programming methods is an area of prime interest.

This research concerns itself with the development of nonlinear programming

methods based on quadratic approximation of the objective function and

linearization of the constraints.

A nonlinear programming prcIeirn can be stated as follows:

minimize f(x)

subject to xES

where f is a function aefined on En, S is a subset of En, and x is an

n-dimensional vector. The function f and the set S are usually called the

objective function and the feasible reqion, respectively. A decision

vector x is called a feasible solution if xES. The nonlinear program aims

at finding a feasible solution such that f(x) > f(X) for each feasible

point x. Such a point x is called an optimal solution to the problem.
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The set S can be defined in terms of inequality and equality restric-

tions leading to the following qeneral constrained nonlinear proqram:

P: minimize f(x)

subject to gi(x) < 0, i = 1,...,m

hi(x) 0, i : I,...

Each of the constraints gi(x) < 0 for i 1,...,m is called an inequality

constraint and each of the constraints hi(x) 
= 0 for i = 1,... ,Z is called

an equality constraint. Most practical nonlinear programming problems have

the above form, and this research concerns itself with quadratic approxima-

tion methods for solving this general constrained problem.
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1.2 Quadratic Approximation Methods

In this section, we will briefly discuss the published literature on

quadratic approximation methods, commonly known as quasi-Newton or Newton-

type methods. The basis of these methods is to successively form a quad-

ratic subprogram by linearizing the original nonlinear constraints around

a given point and replacing the objective function with a suitable quadratic

form. The optimal solution to the quadratic subprogram is used to update

the current solution to the original problem.

This class of methods was originally proposed by Wilson [19631 anc

further extended by several authors including Garcia and Mangasarian [1976],

Han [1976, 19771 and Powell [1978]. Perhaps the most important property

which is shared by these algorithms is the fact that tney enjoy a super-

linear rate of convergence in the vacinity of Kuhn-Tucker points that

satisfy second order optimality conditions. In [1977], Han was able to

show that the optimal solution to the quadratic problem is indeed a descent

direction to a suitable penalty function. Through the use of a line search,

he showed convergence of the sequence of iterates even if the starting solu-

tion is remote from a Kuhn-Tucker point, thus establishing global convergence.

1.2-1 General Description of the Algorithm

In this section, we will provide a general desc-iption of the quadratic

approximation algorithm for solving a general constrained nonlinear pro-

gramming problem of the form

P: minimize f(x)

subject to gi(x) < 0, i = 1,...,M

hi(x) = 0, i = 1,...
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Each iteration consists of two major steps, namely, a direction findinq step

and a line search step. In the direction finding step, a quadratic programming

subproblem is first formed. The solution to this quadratic program yields

a search direction. Once the direction is determined, a line search is

performed to produce a new point.

k k k tSuppose that at iteration k, the vectors x cE ", u kEl, v kE and an

nxn matrix Bk are given. The following steps are successively performed.

Direction finding step

kA quadratic subprogram o(x ,Bk) is formulated as follows:

Q(xkBk): minimize tf(xtd + A d

k k ~k
subject to g(x ) + Vgix k) td < 0, i = 1,...,m

hi(x ) + Vhi(xk ) td = 0, i = 1,...

Note that the original nonlinear constraints are linearized arouno the point
k dkk

x . Let d be a solution of Q(x kBk). This vector will be called a search

direction or simply a direction. The dual vectors pk and k are the Lagranqian

multipliers associated with the linear inequality and equality constraints

respectively, and will be used to update the Lagrangian multipliers of the

original problem P. Note that the construction of the constraints forces

the direction dk to point towards the feasible region. Particularly, if
gi(xk ) > 0, that is, if the ith inequality constraint is violated, then the

ith constraint of the quadratic program will guarantee that Vgi(xk) tdk

< -gi(x k) < 0. Therefore, moving along dk will reduce the infeasibility

of the ith constraint of the original problem. Similar interpretation can

be given for equality constraints.



Line search step

Using a suitable descent function , once the direction dk is deter-

mined, a line search along it is performed, resulting in a steDsize X k and

k+l k k kdk k
a new point x = x + Xkd such that (x ) < (xk). in the vicinity

of a Kuhn-Tucker solution, as will be discussed later, superlinear conver-

gence is attained by simply letting Ak = 1. For the purpose of the next
itrtouk+l adv k+l k k

iteration, u and v are replaced with p and q respectively. These

vectors can also be used to form the matrix Bk+l , as will be discussed

later.

The algorithm starts with a point xI , which is not required to be

feasible. Under certain assumptions, the algorithm terminates at a Kuhn-

Tucker point in a finite number of iterations or else generates an infinite

sequence {x k, any accumulation point of which is a Kuhn-Tucker point. We

note that the generated sequence {x k} may not be feasible, thus deviating

from conventional feasiLle direction methods as in the works of Zantendijk

11960] and Topkis-Veinott [1967].

We note that a linearly constrained subprogram can be used in place of

the quadratic subprogram. The solution to the linearly constrained problem

k+l
is used as the next iterate point x .We brirfly discuss below the linear

constrained programs proposed by Rosen and Kreuser [19721 and Robinson [19721.

Rosen and Kreuser's subprogram is as follows:

minimize f(x) + I um (x) + vh
~ u~~(x + ~v~h(x)

subject to gi(x k + Vgi(x k) t(x-x k) < 0, i =',...m

gi(x ) + Vhi(x k) t(x-x) 0 , i =

The objective funct, - i" the Lagranqian function fnr problem P, and the con-
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straints are linear approximations to the original constraints.

Robinson used a slightly different objective function of the form:

m k (gpx, - gi(xk) vg(xk)t(x-x )f ix I uig -I ig

Z k xk - xkt( k)
+ vi[hi(x) - h.(x ) Vhi(x ) (x-x ]

The main difference is that linear approximations to the original constraints

are subtracted from the Lagrangian objective function. When the original

problem is linearly constrained, the objective function proposed by Robinson

is equivalent to the original criterion function. This is not the case for

the method of Rosen and Kreuser unless, of course, u = 0 and vI = 0.

Line search is usually used to control the convergence of the generated

sequence rx k. However, if the point xk is sufficiently close to a solution
k+l k k k+l k_-

pointx, the newpointx x +0 satisfies I[ x -xJJ <  x I, so

that the distance function from x can itself be used as a descent function.

Honre the step size rule X = 1 is useful in the vicinity of a solution

point. This rule has been used by Wilson [1963], Rosen and Kreuser [19713,

Robinson [19721, Garcia and Mangasarian 11976), Han [1976, 1977], and Powell

[19781. i a starting point is far from a solution, the use of line search

is necessary to achieve global convergence.

Han [1977], and Bazaraa and Goode [19791 used line search in the context

of quadratic approximation methods in order to maintain the monotonic decrease

of an exact penalty function.

We note that the algorithm under study can be thoughL of as an extension

of a certain class of descent algorithms for unconstrained OptimiZdtiOn.

Particularly in the absence of constraints, and by choosing the descent func-

tion to be the objective function itself, various choices of lead to
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distinct methods. If Bk  I the aloorithm is the method of the steepest

descent. When the matrix Bk is taken as the Hessian of the objective func-

tion, the algorithm reduces to Newton's method. If updating schemes are

used to approximate the Hessian of the objective function, then the algorithm

turns out to be a quasi-Newton method.

1.2-2 The Quadratic Programing Subproblem

In this section, we will discuss various methods proposed for forming

the quadratic programming direction finding problem. The linearization of

all constraints is the common property of these methods. However, various

objective functions for the nuadratic proqram have been proposed by several

authors. Particularly the quadratic objeccive function at iteration k is

given by 'f(x k)td + 1 dtBkd, where B approximates the Hessian of the2 k k
objective function or the Lagrangian function

m Z
L(x,u,v) = f(x) + uigi(x) + vihi(x)

In this section, we will discuss some methods for computing and uodatinq

the matrix B . These include exact computation, finite difference apprcx-

imatior., and the use of quasi-Newton updates for the Hessian of the Lagrangian

function or the original objective function. Other choices of interest are

identity and diagonal matrices.

Exact Computation of the Hessian

2 k,The matrix Bk is taken as the Hessian of the objective function 7 f(x

or the Hessian of the Lagrangian 7 xxL(x ,u ,v ) aiven by:

k k k =2 k + k 2 k k 2 k
,Lk k ) = 1 ) + I i i

-- -. x u v i~ x i n(xul
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In [IQ6,j, Wilson used the Hessian 7xxL of the Laqrangian function and was

zK,.e to show superlinear convergence of the algorithm. One disadvantage

caused by this choice, however, is the requirement that the Hessian be
2

determined at each iteration k. This involves the evaluation of T (l+m+Z)

scalar functions even if all gradient vectors are given. For most func-

tions this operation is very costly. If the Hessian 7 xxL(x,u,v) is relatively

easy to obtain and is positive definite, then this approach may prove attrac-

tive. Keeping in mind the difficulties associated with solving a nonconvex

quadratic program, several methods have been proposed to maintain positive

k k kdefiniteness of Bk even if the Hessian VxxL(x ,u ,v ) were not. In [19671,

Greenstadt suggested

B k I 

where 3i. = max a is a positive scalar, a .is the 
ith eigenvalue of

k k vk ) ,
x Lx ,u ,v ) and b. is its corresponding eigenvector with lb. 1 = 1. The

xx ki

method of Levenberg-Marquardt is to let

k k vk
Bk = Xx L(x ,u , )+

where is a positive scalar large enough to assure that Bk is Positive defi-

nite. Org particular implementation of this scheme is to attempt to use

k kvk t
Cholesky's factorization of 7XxL(x ,u ,v ) into the form LOL , where L is a

lower triangular matrix with ones on the diagonal and D is a diagonal matrix

k k k
with positive diagonal elements. If 7 xL(x ,u ,v ) is not positive definite,

the factorization would fail, but as described in Gill and Murray [1972], a

factorization of a modified matrix Bk will be at hand. For other methods,

mk



see Goldfeld, Quandt, Trotter [1966], Fiacco and McCormick [1968], Gill n

Murray [1972], Mathews and Davies [1971], Fletcher and Freeman [19771.

Finite Difference Approximation of the Hessian

if obtaining the Hessian V L(xu,v) or 7 2f(x) is relativelv difficult,

a finite difference approximation to the Hessian can be used. This is done

as follows:

V XL(x k+hej'u kv) - V xL(x k , k i ,v ,j =,,n
[Bkij hi 1

where h is a suitably chosen scalar, and e. denotes a unit vector whose Jth

entry is one.

There is a significant amount of theoretical and computational support

for this approximation. For example, see Goldstein [1965], Stewart [19671

and Goldstein and Price [1967] and Dennis [1972]. The expense of computino
2

2- (l+m+Z) scalar functions still remains and positive definiteness of Bk is

not guaranteed.

A technique to reduce the overall computational effort is to hold the

matrix Bk fixed for a certain number of iterations. This is oractically useful

when the change of the Hessian is not significant. However, it is difficult

to decide how long the matrix should be held fixed. For details of this

technique, see Brent [19733.

Quasi-Newton Updates

To avoid calculating second derivatives, quasi-Newton updates have been

investigated by several authors. The basic scheme is of the form:

B k+l B k + Dk

Here Dk is called a correction matrix and is chosen to assure that Bk+l
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satisfies the quas-Newton equation:

Bk+I Sk =Yk

where sk xk+l - x and yk = VxL(xk+l ,u k+lv k) - xL(xk,uk+l ,v )k+ First,

we discuss updates for de.- and cymmetric Hessian matrices. Later, we will

discuss uodates for the sparse case.

Garcia and Mangasarian [1.9761

Garcia and Mangasarian proposed a suitable update similar to those used

in quasi-Newton methods for unconstrained optimization. They used an updatino

mechanism for an (n+m+e) x (n+,.+Z) matrix which approximates the Hessian of

the Lagrangian. The upper left n x n submatrix is used as the quadratic

form in the direction finding problem. To be specific, the updating scheme

is given below:

2t

Hk+l = Hk + t (YkkCk+CkSkY) kyk CkskskCk
sk kk ( ksk) 2

where

s k = zk+l  z k

k (k k k
z ( , u ,v )

Yk = z L(z W) - z L(z) - HkSk

(I if k+l - 0 mod (n+m+e)
C =k+l

/C - 9 C S stC otherwise
C k k k



The initial matrices HI and C1 are equal to the (i+m+/L) x (n+m+ ) identity

matrices. Since Bk is the upper left n x n submatrix of Hk' the scheme seems

to be wasteful especially if the number of constraints is very large. Further-

more, it does not guarantee that the matrix Bk is positive semi-definite.

Han [19761

As opposed to updating the overall Hessian of the Lagrangian, Han pro-

posed updating the Hessian VxxL(xk,uk,v k ) only with respect to the vector x.

The updates are extensions of some well known double rank updates for uncon-

strained optimization problems. The general formula is given below:

t C t )c ItB(BYk- k) +c k(y-Bkks) t  sk k- BkS k  ,
Bk+i Bk + ( (C_____2ck k t k2

k+l xk  xk+l k+l k+l k k+l kk+where sk = x - ' Yk = Vx L( ,u ,v V - xL(X , u v ,nd c k

is any vector with cksk 0. Even though the above formula updates the

Hessian of the Lagrangian only with respect to the x vector, it has th,

disadvantage that it does not preserve positive definiteness.

Powell [1978]

Powell presented a quasi-Newton update which preserves positive definite-

ness of the matrix Bk even if the Hessian V xxL(x,u,v) is itself not positivw

definite. Powell's update can be thought of as an extension of the well

known BFGS formul3 given below.

t t

Bk ks k YkYk

k+1 k d k+l k+l xk k+l k+l
where s k =x k xk and Yk 7x L(xk lu ,v ) - x u ,v ) if
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the matrix Bk is positive definite, then the matrix Bk+l is also positive

definite provided that styk > 0 holds. However, Powell pointed out that
defte

skk > 0 may not be satisfied due to the negative curvature of the Lagrangian

function. Rather than using Hk in the third term of the BFGS formula,

Powell used the vector Ck which is a convex combination of Yk and BkS k-
t

The convex combination is chosen so that skk > 0 holds in all cases, thus

maintaining positive definiteness of Bk+l. This update is given below.

B t 8t

Bk+l Bk S t + t
sk ksk ~k k

where Ek = Yk + (1-6) Bksk , and

1 if s y k > 0.2S Bk~

e = ~ if kyk *~Osk ksk
0.2 skBksk
St otherwise

Sparse and Symmetric Updates

For sparse problems, the quasi-Newton updates discussed so far have
2

several drawbacks. First, because of symmetry, T memory locations are

needed, which becomes impractical as n increases. Second, zero elements in

the Hessian of the Lagrangian will be approximated by generally nonzero

elements resulting from the updating formula. Finally, the update formulae

may waste a substantial computational effort in carrying out unnecessary

matrix and vector multiplications. Here we discuss sparse and symmetric

updates where the Hessian xxL(x,u,v) of the Lagrangian function or the

Hessi-ri of the objective function has a known sparsity pattern.

Let J be the set of indices denotinq the positions of the known zero

entries of the Hessian and let K be the set of all indicies not in J.
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In [1977, 1978], Toint proposed the sparse and symmetric update qiven as

follows:

First the vector Ti, i 1,...,n is defined as follows:

k if (i,j)EK
S.

0 otherwise

An n x n matrix is formed using the vectors T i 'S as follows, where 6ij is

the Kronecker delta.

ij = T..T..ij j + 1Ti H 2 6 . s i = l,...,n, j = n

Note that satisfies the sparsity conditions, and is symmetric and positive

definite provided that none of the vector Ti. i = l,...,k is identically zero.

-Then

0 if (iXj)J

(Bk+l)ij = 5 +

3is + + (Bk)ij otherwise

where the vector 6 is

S= (D-1 (yk_B kSk

Note that the above update satisfies the Quasi-Newton equation. See Schubert

[1970] for an update of the Jacobian matrix for nonlinear systems of equations.

The interested reader may refer to Goldfarb [19701 for an update based on

the Cholesky decomposition, Marwil [1978] and Shanno [1980] for an update

based on Greenstadt's [1970] variational method.
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Special Choices of Bk

Here we will consider two special choices of Bk. When Bk is chosen to

identity matrix, the subprogram Q(xk,Bk) is equivalent to he problembe thek

of finding the least distance from the point - Vf(x k) to the feasible region

of the direction-finding problem. Several authors have provided efficient

methods to handle this special problem. For example, see the survey paper

by Cottle and Djang [1979]. Here we may expect that the direction dk pro-

dcdbQxk O~k,
duced by Q(x ,I) would be inferior to the direction produced by o(xkBk )

karound the solution R. However, the subprogram Q(x ,I) has some advantages.

One principal advantage is that this program is usually much easier to solve

than Q(xk B k). Another factor is the fact the program o(xk Bk) yields super-

linear convergence only in the vicinity of a solution point x, but actually

has no theoretical advantage in early stages of the optimization process.

The use of the program Q(x k I) can be interpreted as an extension of the

steepest descent method for unconstrained optimization.

Another choice is that each B k is taken as a diagonal matrix whose

diagonal entry approximates the Hessian of the Lagrangian function or the

objective function by finite difference methods. To be specific, let

( VxL(xk+hei,uk,vk). - VxL(xkukvk) )
(Bk)ii = max 1 , Vi x 1

h

where h is a suitably chosen positive number and ei denotes an n-dimensional

unit vector whose ith entry is one. We note that the (l+m+L) gradient vectors

are evaluated to produce the diagonal matrix at each iteration. Note that

the matrix Bk is positive definite, and KBkI and IIBkJ
1 Ilare both bounded

if the gradient vectors are bounded. Other choices for the diagonal matrix

m will ho invptiaated.



1.2-3 Feasible Region for the Quadratic Program

Here we letS be the feasible region of problem P. That is,

S- {xj gi(x) < 0, i 7,...,m, hi(x) = 0, i =

We assume that S is nonempty and that gi(-), i = 1,....,m and hi(.), i

are continuously differentiable. Let S(xk) denote the linearization of the

set S at the point xk so that

hi(x k ) + Vhi(xk ) t(x-x k) = 0, i

Note that the feasible region of the quadratic program Q(x kBk) is nonempty

only if S(xk) is nonempty. If the latter is empty, then the quadratic proaram

is inconsistent and the quadratic approximation algorithm will stop prematurely

This point is illustrated by the following example.

Example 1: minimize xI + x2
subject to hl(x) = x 2 0

1 x1  x2

Note that the feasible region of the problem is nonempty and that the optimal

solution is (-1, -1) t . Let Bk = I and consider the quadratic subprogram

at the point xk = (0,0) t given below:

minimiz (d +d2 ) + I (d2+d2

subject to - 2 = 0
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Clearly this problem is inconsistent and would result in premature termina-

tion of the algorithm.

In the vicinity of a Kuhn-Tucker point satisfying the second order

sufficiency optimality conditions, the region S(x ) is nonempty. If thek ^ k)
point x is feasible, the region S(x ) is indeed nonempty because d = 0 is

feasible. However, if the point xk is infeasible and remote from the solu-

tion point, we must provide a resolution to the case where the reqion S(xk)

is empty. Han (1977] provided a sufficient condition to assure that the
^(k

region S(x ) is nonempty. The result is summarized in the following lemma.

Lemma 1

Let gi' i = 1,...,m be continuously differentiable and convex, and

hi , i = 1,...,Z be affine. If the set {x! gi(x) < 0, hi(x) = 0, i = 1,....m,

i=,...,Z} is nonempty, then S(xk ) is nonempty for any x kEk

Clearly, this sufficient condition is very restrictive. Bazaraa and

Goode [1979] introduced artificial variables to prevent the constraint set from

being empty. Through the use of a penalty term, these artificial variables

will be equal to zero, unless of course the region S(xk) is itself empty.

This quadratic program is given below:

k k M (z +1D(x ,Bk): minimize Vf(xk) d + r dBkd +r Yi+ z
2 k iJl

subject to gi(xk ) + gi(xk ) td < yi' i =

h(Xk ) + Vhi(xk )t d z -z i = ,...

Yi > 0 , i = l,...,m

z > 0 = I,. .. ,
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where r is a sufficiently large positive number. The introduction of the
S +

artificial variables y,, z and zi assures that the feasible region of

D(x kBk) is maintained nonempty. However, we will show through a simple

example that quasi-Newton updates of Bk are inadequate in this case unless

some additional considerations are taken into account.

Examole 2: We will reconsider Example 1.

minimize x1 + x2

subject to x2 + x2 _ 2 = 0

122

xlX 2

Let the point xk = (0,0) and Bk = I. Then we get the quadratic program

D(xkBk) given below:

minimize d + d + d 2+ d + r(y + y-)

subject to - 2 = y - y

y > 0, y > 0

The optimal solution to the above problem is

dk = ( - 1 )t
2' 2

+
y = 0, y = 2

The Lagrangian multiplier q associated with the linear equality constraint is
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q= r

1t

Note that the Lagrangian multiplier u = - at the optimal solution x (-1,-l)
2

If r is sufficiently large, the estimate q of the Lagrangian multiplier

is unnecessarily large. The Lagrangian function will thus be

L(x,q) = x1 + x + r(x2+x2-2)

which means that a big penalty is imposed on the constraint because it was

inconsistent at the point x = ,0 )t The unnecessarily large number

may result in ill-conditioning of the next iterate d k+l like penalty function

methods. We note here that the choice of Bk in Bazaraa and Goode (1979) does

not depend on the estimates of the Lagrangian multipliers. When an update

of Bk is applied, one approach is to keep the values of the Lagrangian multi-

pliers corresponding to the inconsistent constraints fixed rather than

replacing them with the Lagrangian multipliers produced by the quadratic sub-

program D(x ,Bk). In this study, we will investigate the subprogram D(xkBk)

further.

Another approach is to eliminate some inconsistent constraints. Let

I(xk) = {iVgi(xk)j! 01 and J(xk) = jij lvhi(xk )fl 0}. Then we have

the following linear system to represent the feasible region of the quadratic

ksubprogram Q(x ,Bk)

gi(x k) + gi(x k)td < 0, icl(x k)

h.(x ) + vhi(x )td = , k

We will investigate some sufficient conditions to guarantee that the above

system is not empty.
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0-4 Updating the Lagrangian Multipliers

In this section, we will discuss updating the Lagranqian multipliers.
k+l vk+l

The estimates u and v of the Lagrangian multipliers may be used to

determine the matrix Bk+l if B k+l is chosen to approximate the Hessian of

the Lagrangian function. Here we will discuss the updating scheme employed

by most authors and then discuss some variations to be investigated further.

The most popular updating scheme is given below:

k+l kU =p

k+l k
and v = q

k k
where p and q are the Lagrangian multipliers obtained from problem

k k k~
Q(x ,Bk). Note that since p > 0, the nonnegativity of uk+l is automatically

maintained. This scheme has a certain advantage that if the sequence {x k

k kconverges to a Kuhn-Tuck2r point x, the estimates u and v' converge to the

vectors u and v of the Lagrangian multipliers, respectively. Under this

k k
method, the dual solution (p ,qk) may affect :he numerical stability of the

matrix Bk+l. If the length of the vector (pk,qk) is unnecessarily large,

the next iterate Bk+1 may suffer from ill-conditioning. This situation may

karise if Q(x ,Bk) is inconsistent and if the search direction is obtained

by solving D(x ,Bk) as explained in Example 2 in Section 1.2-

Han [1977] presented a sufficient condition that the --norm of the dual

solution (pkqk) is bounded by a certain positive number. The result is

summarized in the following theorem.

Theorem 1

Let f and gi, i = l,...,m be continuously differentiable, gi, i =

be convex, and hi , i = 1,. Z he affine. Suppose that the feasible recion of
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the original problem P is nonempty. Further, suppose that the matrix Bk

satisfies the following condition:

61 d j[2 < dtBkd < 62 1d 112  for any dcEk, for all k

Then there exists > 0 such that if (pk ,q is a dual solution to O(x , k)

k threexst

then the --norm of the dual solution (pk qk) is bounded by r for each k.

The sufficient condition seems restrictive mainly because of convexity

of the inequality constraints and linearity of the equality constraints.

Since the number r is unknown a priori, there still remains the possibility

of ill-conditioning of the matrix Bk if is sufficiently large.

Revising the Updating Scheme
dk k k k

Let d be a solution to Q(x ,Bk). Then the dual vector (p , a) solves

the following system:

k k m k k7f(x k) + Bkd + pigi(xk) + q.Vhi(x k) 0
i=l i=l

Pi(gi(x ) + ?gj(xk ) td k 0, i = 1 ,M

Pi > 0 i = l,...,m

Note that The system may not have a unique solution. In particular, we are

interested in finding a solution (p k,q k) with minimum --norm to prevent the

possibility of ill-conditioning of the matrix Bk+l. Furthermore, we will

investigate other updating rules. One such rule is:

k+l max , k k+lui  m x J ,u i  + 6gi(x )

k+l k xk+lv i =v i + 6hi )
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where 6 is a suitably chosen positive number. This method can be inter-

preted as a subgradient optimization scheme where a fixed step along the

subgradient (g(x k+),h(xk+l)) to the Lagrangian function is taken, and

then forcing any negative components of the Laorangian multioliers of the

inequality constraints to be equal to zero.

1.2-5 Local Convergence

One of the key advantages of quadratic approximation methods is the

fact that they enjoy a superlinear rate of convergence in the vicinity of

a Kuhn-Tucker point satisfying second order sufficiency conditions. In this

section, we will discuss the major results and assumptions which guarantee

superlinear convergence.

First, we review the second order sufficiency condition which was first

studied by Fiacco and McCormick [1968].

Definition

A Kuhn-Tucker triple (x,u,v) of problem P satisfies the second order

sufficiency conditions if the following conditions are simultaneously satisfied:

(i) u, 0 if icI(x), where I( ) = a () =  0}.

(ii) The set N, the collection of the gradient vectors Vqi(x), il( )

and Th.(x), i = 1,. is linearly independent.

(iii) The Hessian xxL(Z) is positive definite on the tangent subspace

T = {y ytd = 0, dN1.

Local convergence can be established through the use of a contraction

mapping defined on a sufficiently small ball B (z) = {z! ! z-_z -_l such

that
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I zk+l i < z k- 

where z denotes a Kuhn-Tucker triple satisfying the second order s-.ficiency

conditions. The following theorem summarizes the main local converqence

result of the algorithm.

Theorem 2

Let z (x,u,v) be a Kuhn-Tucker triple of problem P. Suppose that z

satisfies the second order sufficiency condition, and that f, a.,(il,....m),

hi,(i=l,..., ) have a second derivative which is Tinschitz continuous at the

point x. Then for rr(O,l), there exist cositive nu~ibers c and S such that

zkzii < and V Bk-.xL(Za h o zk xk k kif1 z < E at the point z ( ,u v ), there

k k+l k+( k k
exists a closest solution (d ,u , v of o(x ,Bk) to (O, v such that

zk+l-z:' < r" zk- ill

k+l xkk k+l k+l
where z =(x +,u ,v

Proof

See Han [19761.

We note that the theorem holds only when zk and Bk are sufficiently

close to z and L(z), respectively. Obviously, since zk+ -z\l < ri! zk-
xx Z 1 - .

the convergence is guaranteed. However, as we will discuss later in the

section, a fast rate of convergence characterized by superlinear convergence,

is actually realized.

For the discussion of the superlinear convergence, we present the followinq

def,.nitions of linear and superlinear convernence.
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Let {zk } cenverge to z. Then the sequence {z is said to converge

linearly if there exists an r(O,l) and k0 > 0 such that

Z z < r11 zk- ; for all k > k

If there exists a sequence {Tkl convergent to zero such that

k+1 z k _
j Z -z ! kl -zl

then the secuence {zk } is said to converge suoerlineariv. If {Zk converces

superlinearly to z, then

zk+l_ k

l i m 

=

k co j z- 1i

provided that z / z. However, the converse is not true. 7or more details

on superlinear convergence properties, refer to Dennis and More [197a, i9771

and Ortega and Reinbo'dt [1970].

To obtain the linear and superlinear rate of convergence, several suffi-

cient conditions have been provided. The conditions are mainly based on the

absolute and relative error of approximations to the Hessian, measured by some

fixed matrix norms. A sufficient condition for the linear rate of convercence

is that Bk- 7xxL(-)l < 6. Here' , .  denote any fixed matrix norm and 5- is

a sufficiently small positive number. The interested reader may refer to

Garcia and Manqasarian [1976J, and Han [1976]. A sufficient condition for the

superlinear rate of convergence is that

- Lk+l

lim (Bk-2 xx Lx x

k 1 k+l- k , -
z z i
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This condition is credited to Han [1976]. For similar conditions, refer to

Garcia and Mangasarian, and Fcwell [1978]. We note that if !I Bk-VxxL(Z)Jl

converges to zero, then the sequence {z k } converges superlinearly to z.

The reader may easily note that the methods of Wilson [1953], Robinson (19721

and the finite difference procedure are superlinearly convergent because

lim l Bk- xxL(Z)!l = 0. However, the condition lim Bk-XxxL(i)ll = 0 is not
k-- kk-*ko
necessary for superlinear convergence.

1.2-6. Global Convergence

In this section, we will discuss global convergence of quadratic approx-

imation algorithms employing line search. As mentioned before, in the vicinity

of a Kuhn-Tucker point which satisfies the second order sufficiency condition, t

distance function from the Kuhn-Tucker point can be used as a descent function,

thus establishing convergence. If a starting point is remote from the Kuhn-

Tucker point, a line search scheme employing a suitable descent function is

needed to achieve convergence. The choice of descent functions and their

convergence results will be discussed in this section.

An Exact Penalty Function

A successful descent function is the penalty function r (x) of the form

r (x) = f(x) + r Y max{C,gi(x)} + ' 1h (x)1
li=l i=1 I

The parameter r will be called an exact penalty parameter. The function was

first used as a descent function in the context of quadratic pproximation
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methods by Han [19771. In [19791, Bazaraa and Goode simplified their minimax

algorithm to directly handle the penalty function problem to minimize r(X).

The algorithms of Han and Bazaraa and Goode are discussed below. Both algo-

rithms are globally convergent in the sense that each accumulation point of

the sequence {xk is a Kuhn-Tucker point. Both algorithms have the form

x k+l =k + kdk where d k is obtained from solving a quadratic program and

Xk is obtained by a suitable line search scheme. Han [1977] showed that the
dk k

direction d obtained from the quadratic programming problem Q(x ,Bk) is

indeed a descent direction for the exact penalty function. The line search

along the direction dk is performed as follows:

r (x- ) < min (xk+Xd k ) + Fk
O<Ak<6

where 6 is a prescribed positive number and Ek is an error term allowed for

the line search such that

k=l

We note that since the function ,r(x) is nondifferentiable, derivative-based

search methods cannot be applied directly.

Bazaraa and Goode [1979]

Their algorithm was originally designed to solve minimax problems. Hence

the algorithm can be specialized to solve the exact penalty function. The

kcorresponding quadratic subprogram D(x ,Bk) is of the form
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D(xk,Bk): minimize Vf(xk)td + r Yi + Z(zi+zi) + dtBkdLi=li l2

subject to gi(xk) + Vgi(xk)td <Yi' i

hi(xk) + Vhi(xk)td z+ -, i

Yi > 0, i =

z i , zi > 0, i :

Note that each subprogram D(xk, B k) has a nonempty feasible region. They

specialized Armijo (1964] search rule under the assumption that f, gi,

i = I,...,m, and hi,i = l,...,Z,are upper uniformly differentiable. Each

Xk is determined by:

Xk = (Ik

where mk is the smallest nonnegative integer such that

r(X k+(l)mkd k) r(X k) + 1 k V*(xk,dk

where

V*¢ (xk,dk) + f(x ) td k Y + r( (zi+zi))i = + i =

- r L max{O,gi(xk)1 + ih (Xk )

The two algorithms can be interpreted as an exact penalty function method

which attempts to solve a single unconstrained penalty function r(x), resultina

..... ..... . ... ....... . . . -- . . . - ' - - m mwn m m unr
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in a solution to problem P. This exact penalty function approach was first

introduced by Fletcher [1970] who transformed the oriqinal oroblem into a

completely unconstrained program. The basic idea is that if x is a Kuhn-

Tucker point to problem P, there exists a number r such that x is a local

optimal solution to the problem to minimize r (x) for all r > r. The lower

bound r is estimated by the Laqrangian multipliers. For a review of exact

penalty functions, the reader may refer to Pietrzykowski [1969], Evans, Gould

and Tolle [1973], Howe [1973], Conn [19731, Conn and Pietrzykowski [1973],

and Fletcher [1975]. For the existence of a globally exact penalty function

in the convex case and in the nonconvex case refer to Bertsekas [1975], and

Bazaraa and Goode [1979], Han and Mangasarian [1979].
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1.4 Summary of Completed Research

In this section, we briefly summarize the major findings of the

research completed thus far. A detailed description is given in the

Appendix which reporduces the following papers:

1. M. S. Bazaraa and J. J. Goode, "A Globally Exact Penalty Function

Without Convexity," submitted to Mathematical Programming.

2. M. S. Bazaraa and J. J. Goode, "An Extension of Armijo's Rule to

Minimax and Quasi-Newton Methods for Constrained Optimization,"

submitted to Journal of Optimization Theory and Applications.

3. M. S. Bazaraa and J. J. Goode, "An Algorithm for Linearly Con-

strained Nonlinear Programming,"Journal of Mathematical Analysis

and Applications, to appear.

Globally Exact Penalty Functions

It is well known, under a suitable constraint qualification, that if i

is an isolated local optimal solution to the problem:

minimize f(x)

subject to gi(x) < 0 for i = 1,...,m

then there exists a number A0 so that ; is a local optimal solution to the

problem:

m
minimize f(x) + X I max{O,gi(x)}

i=l

for all X> )0* Unfortunately, however, in the absence of convexity, the

above result does not hold globally.
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In this paper we show, under mild conditions, that if a compact ccnstraint

set X is added to the constraints gi(x) < 0 for i = l,...,m, then the set of

global optimal solutions to the original problem and the set of global optimal

solutions to the penalty problem, for a sufficiently large penalty parameter

X, are equivalent. In order to prove this result, we use the fact that a

family of relatively open sets that cover X must have a finite subcover. An

estimate of the size of the penalty parameter is also given.

Minimax and Quasi-Newton Algorithms

An algorithm for solving a minimax problem over a closed convex set is

deve.jped. Using a newly developed continuous pseudo-directional derivative,

a direction is found by minimizing a positive-semidefinite quadratic program

over the feasible region. A step size is then computed using an extension of

Armijo's inexact line search.

The algorithm is specialized to both unconstrained and constrained non-

linear programs. For the unconstrained case, various steepest descent and

quasi-Newton methods are produced through different choices of the quadratic

form. Using an exact penalty function to handle the nonlinear constraints,

the direction-finding problem reduces to a convex quadratic programming pro-

blem. Unlike other available direction-finding routines that linearize the

nonlinear constraints, our program is always feasible. A suitable step size

is then found using Armijo's rule. It is shown that accumulation points of

the algorithm are indeed Kuhn-Tucker points to the original problem.

Algorithm for Linearly Constrained Nonlinear Programs

Here an algorithm for solving a linearly constrained nonlinear program

is developed. Given a feasible solution, to avoid jamming, binding and near
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binding constraints are identified. A direction is calculated by solving

a least distance programming problem which is defined in terms of the

gradients of these constraints.

Once a direction is found, an estimate of the step size, using quadratic

approximation of the objective function, is first computed. This estimate is

then used in conjunction with Armijo's inexact line search to calculate a new

point. It is shown that each accumulation point is a Kuhn-Tucker solution

to a slight perturbation of the original problem. Under suitable second order

optimality conditions, we show that eventually one functional evaluation is

needed to compute the step size.
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II. GENERIC OPTIfIALITY CONDITIONS AND NONDIFFERETIABLE OPTIMIZATION

(J. Spinqarn)

I1.1 Introduction

Our research during the period covered by this contract has centered

on two themes, both within the compass of mathematical programming: generic

optimality conditions and nondifferentiable optimization.

II.1-1 Generic Optimality Conditions

Our work on generic conditions continued the investigation that was

begun in Spingarn and Rockafellar [5]. In that paper, it had been shown

n+mthat for almost all (v,u)ER n , at every local minimizer for the problem

Q(v,u) minimize f(x) - x-v over all xcRn

satisfying gi(x) < ui  for all i = 1,...,m

the so called "strong second-order optimality conditions" hold (assuming that

the functions f and gi possess derivatives of sufficiently high order). In

this sense, the strong second-order conditions are "generically" necessary

for (local) optimality with respect to the class O(v,u).

When studying questions of genericity, the precise class of problems

to which the results apply is crucial. The family Q(v,u) is only one example

of a family for which the conditions are generic. So the question naturally

arises: For what other families will the strong second-order conditions,

or similar conditions, be generically necessary for optimality? This is the

question addressed by our recent work on generic conditions. Our principal
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accomplishment in this direction has been to obtain an easily verifiable

criterion which ensures the genericity of the conditions.

In some circumstances, we found that it is necessary tr modify the

strong conditions themselves. This situation occurs when the family includes

both "fixed" and "variable" constraints. "Fixed" constraints are those that

do not vary with the problem parameters, while "variable" constraints do.

The exact manner in which the generic conditions depend on the fixed

constraints is also described by our results.

11.1-2 Nondifferentiable Optimization

If f: RnR is a locally Lipschitz function, the qeneralized subdifferential

of f is the set-valued mapping f: Rn4Rn defined by taking ;f(x) to be the

convex hull of the set of all limit points of sequences of the form (Vf(x n)),

where x n-x and f is differentiable at x n. (This definition is due to F.

Clarke [93). If f happens to be convex then 3f(x) is just the set of

"subgradients" of f at x, i.e., the set ': f(z) - f(x) > < ,z-x> VzcRn}.

When the generalized subdifferential was first studied, the motive was

to provide a tool that would be of usc in handling optimization problems in

which a function which is neither convex nor differentiable is to be minimized.

Most algorithms for solving constrained or unconstrained minimization problems

make heavy use of derivatives or, in the nondifferentiable but convex case,

of subgradients. To generalize such algorithms to a broader class of func-

tions, it is necessary to have a substitute; hence the need for the generalized

subdifferential.

Our work in this area has concentrated on the relationship between certain

properties of nondifferentiable functions and properties of their generalized

subdifferentials. The basic qoal has been to identify subclasses of functions
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which are both likely to arise in optimization problems and whose subdiffer-

entials posess properties which are likely to facilitate the development

of algorithms.

Our principal achievement in this direction has been to characterize

the class of "lower-C I" functions in terms of their subdifferentials.

Lower-C 1 functions are a desirable class of functions to study because of

the natural way they arise in optimization problems. Anytime a function is

obtained by maximizing in one argument a second function of two arguments

(e.g., f(x) - max g(x,s) one obtains a lower-C function, provided the
S

second function has a continuous derivative and the maximum is taken over

a compact set. Such functions arise in decomposition schemes for mini-

mizing a function of two arguments.

The most remarkable feature of our characterization of lower-C 1 func-

tions is that the corresponding property of the subdifferential mapping is

so closely related to the "monotone" property that characterizes the sub-

differential of a convex function. Because of this resemblance, we have

coined the word "submonotone" for the related property. The close resem-

blance is more than a curiosity. There is reason to hope that the simi-

larity will facilitate the transfer to nondifferentiable optimization of

algorithms originally intended for convex programming.
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11.2 Research and Publications Sumrnary - Generic Conditions

The results of our work in this area form the basis for two articles:

"On optirnality conditions for structured families of nonlinear programming

problems" (submitted to Mathematical Programming) and "Second-order opti-

mality conditions that are necessary with probability one" (to appear in

Proceedings, Symposium on Mathematical Proaramming with Data Perturbations,

George Washington University, May 1979). The latter article is a survey

without proofs of all our research on this subject to date, while the

former contains the main results and their proofs.

We investigated problems of the general form indexed by a parameter

pEP, with PCRZ an open set:

Q(p) minimize f(x,p) over all xcCCRn

satisfying qi(x,p) < 0 for all i=l.... ,m, and

h.(x,p) = 0 for all j=l,...,k

This class is more general than O(v,u) in two important respects. First,

the manner in which f, gi and h. depend on the parameter is given more

freedom. Rather than requiring perturbation of a special type (e.g., linear

perturbations of the objective function and right-hand-side perturbations of

the constraints), we only required that the family Q(p) satisfy a general

criterion. Second, in addition to the constraints gi , 0 and h. = 0, which

we refer to as the "variable" constraints, we also investigated the effect

of the "structural" or 'fixed" constraint xEC that does not vary with p.

The distinction between these two types of constraints is important because

the two types play different roles in both the analysis of the conditions



39

and in the statement of the conditions themselves: the conditions that

turn out to be generically necessary for optimality depend on the parti-

cular class of problems under consideration.

Our principal accomplishment here was to give appropriate criteria

for the family Q(p) which guarantee the genericity of the second-order

conditions, and also to describe the form of the second-order conditions

and how they depend on the fixed constraint set C.

In order to duscuss second-order conditions, we found it necessary to

make certain second-order regularity assumptions about the set C. The

conditions that we imposed on the set C were incorporated into our defini-

tion of "cyrtohedror". Cyrtohedra, which we introduced in [43, are piecewise

smooth sets that can be represented locally be a finite number of nonlinear

inequality and equality constraints. A cyrtohedron is a union of submani-

folds, called the "faces" of C, and each xEC belongs to a unique such face.

In a natural way, with each xcC, we can associate the normal cone Nc(x) to

C at x, and the tangent spact at x, Lc(x), to the face containing x.

The second-order conditions which we showed to be generically necessary

for optimality are the generalized strong second-order conditions discussed

previously in Spingarn [4]. A triple (xy,z)CxR~xRk is said to satisfy

these conditions for the problem Q(p) if

(SSOC) (i) x is feasible for Q(p)

(ii) -V xL(x,,z,p ) relint Nc(X), where L is the usual

Lagrangian, and "relint" denotes relative interior

(iii) Yi > 0 iff gi(;,p) = 0, for each i

(iv) The projections onto LC ) of the gradients of the

active constraints are linearly independent

(v) If F is the face of C containing R then V2(LIF)(x,y,z,p)(s,s) > C

for all s Rn satisfying 0 / sL c(X), s perpendicular to the

gradients of the active constraints.
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The family Q(p) is full provided the function pi , l, , ZL(xY,z,PI) has

Jacobian of full rank at all (x,y,z,p)ECxR kxR xR (where L(x,y,z,p) :

f(x,p) + lyigi(xP) + 1zjh.(x,p) is the usual Lagrangian). 
Our main result

is the following:

Theorem 1

Let C C Rn be a d-dimensional cyrtohedron of class CS, f of class C
2 ,

and g and h of class Cs on RnxP with s > max{l,a-m}. If Q(D) is full, there

is a subset P0 C P with P/PO having measure zero, such that for all PP0

if xzC is a local minimizer for Q(5) there exists (y,z)cRmxRk 
satisfying SSOC.
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11.3 Research and Publications Summary - Nondifferentiable Optimization

We have published our results from this line of work in "Submonotone

subdifferentials of Lipschitz functions" (to appear in Trans. Amer. Math. Soc.).

f: Rn , R is a lower-C1 function if every xER n has a neighborhood U such

that for all xeU, f(x) = max g(x,s), where S is some compact set and g and
sES

Vxg are continuous jointly in x and s. If f is a locally Lipschitz function

Rn _. R, we say that 3f is strictly submonotone if for all xERn ,

lim inf 1> 0

Sx2  IXlX 21 -xI -I x2

Yif(xi)

i = 1,2

Our principal result is the following

Theorem 2

f is lower-C 1 iff 3f is strictly submonotone.

Notice the close relationship between strict submonotonicity and monotonicity.

The latter property clearly implies the former since if 3f is monotone, the

numerator in the "lim inf" above is always nonnegative.

We also investigated the property of "submonotonicity", which is

stronger than strict submonotonicity, but weaker than monotonicity. 3f is

submonotone if for all xER
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lir imf <x_ x, y -P >xin Ixl-x -

1
x I x

YEf(x)

y l f(xl)

In termis of the function f, we showed that the submonotonicity of af

corresponds to a certain "regularity" property of the directional deriva-

tive of f. We also proved several results which relate submonotonicity to

properties that have been studied by other authors, such as semismoothness

(Mifflin [7]), lower semi-differentiability (Rockafellar [6]), quasi-

differentiability (pshenichnyi [8]), and Clarke regularity [10]. For

instance, we showed that ;f is submonotone if f is both semismooth and

Clarke regular.
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1. Introduction

A great deal ot atcenciun has been giviL, LU Litc ulje4t C-f :L,- CzA- r y

functions where a constrained nonlinear programming problem is transformed

into a single unconstrained problem or into a finite sequence of uncon-

strained problems.

Without convexity, the current theory applies only locally. Specifically,

if x is a strict local minimum to problem P0 to minimize f(x) subject to

9i(x ) < 0 for i 1,...,m, under a suitable constraint qualification, there

exists a number A0 such that x is a local optimal to the problem to minimize

9(N,X) for all X > X0, where e(x,A) is an appropriate penalty function.

For a review of exact penalty functions, the reader may refer to Evans,

Gould, and Tolle [41, Fletcher [5], Han and Mangasarian [8], Howe [9],

McCormick [111, and Pietrzykowski [12,13]. For the existence of a globally

exact penalty function in the convex case, see Bertsekas [3] and Zangwill

(15].

The main result of this paper is to show, under mild assumptions, the

existence of a globally exact penalty function in the nonconvex case.

Before proceeding, it is worthwhile to briefly review the cases under which

an exact penalty does not exist. In this regard, consider problem P0 and

let gi(x)+ = max {O,gi(x)}. Given the penalty parameter X, the penalty

m
problem is to minimize e(x,X) where 6(x,X)'= f(x) + X g (x) Figure 1 shows

i=l +"

for m=l, the set A = {(gI(x)+,f(x)): xeR n. It is clear that if x solves

problem Pop then there exists a X0 so that x also solves the penalty pro-

bleia to minimize e(x,X) for all X > X0, if and only if there is a nonver-
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tical supporting hyperplane with slope -A 0 , to the set A at the point

(g1(x) ,f(x)). In Figure la, such a supporting hyperplane exists, whereas

in Figures lb and ic, a globally exact penalty function does not exist. The

case illustrated in Figure lb can be easily overcome by the stipulation of a

suitaDie constraia; quaiiii.c=zion of lh= kind LhaL is nerdd to --.idat.

the Kuhn-Tucker conditions.

If we modify problem 0 so that a compact set X is included in the0

constraints yielding the compact set A' - ((g (x) ,f(x)): xeX}, as shown

in Figure ld, a supporting hyperplane can be found.

In this paper we consider the following problem:

Problem P: minimize f(x)

subject to g.i(x) < 0 for i = 1,... ,m

x X

We think of the constraints defined by X as easy constraints that must be

handled explicitly and of the constraints gi(x) < 0 for i = 1,...,m as

those that are treated by a penalty function. Typically, X contains lower

and upper bounds on the variables, and possibly linear constraints. As

discussed above, we prove that if X is compact and under a suitable con-

straint qualification, a globally exact penalty exists. The penalty pro-

blem under consideration is:

Problem P(A): minimize 8(x,X)

subject to xcX

m

In this study, we let e(x,X) = f(x) + X gi(x)+. All the qualitative
i1l m

results given in this paper are valid if the expression gi(x)+ is
i=l
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f) x2  f (x) = xf (x) = x 2 f.

f(x) gl(x) = x f(x) g1 (x) = x

A

A

~gl(x) +

supporting hyperplane with slipe -X0 = 02

A = {y,z): y > 0 and z = y or y = 0 and z > 0} A {(y,z): y > 0, z + yy}

A nonvertical supporting hyperplane exists in A nonvertical supporting hv.perpla
the convex case does not exist in the convex case

to the lack of a constraint quali
fication

(a) (b)

(a) f (x)

f(x) = x f(x) X x
g1 (x) =le gl(x) =1e1 x = [-,1]

1 1 (x)+ \ 1 g~)

-1

supporting hyperplane
with slope -X0

A {(y,z): y = 0 and z > 0 or 0 < y < 1 A'= {(y,z): y 0 and zc[0,11 or

and z = ?n (Y-y)} 0 < y < i-e-l and z = Zn (1-y)}

A nonvertical supporting hyperplane does A nonvertical supporting hyperplane

not exist in the nonconvex case because exists in the nonconvex case in the

of noncompactness of A presence of the compact set X

(C) (d)

Figure 1. Illustration of a Globally Exact Penalty Function in the (g ,f) plane
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replaced by the expression Q(11 g(x) + 1 ), where Q: R+ R saisfies:

Q(O) = 0, Q(6) > 0 for 5 > 0, ' > lir Q( /) > 0

This assertion follows directly from a Theorem in [8].

Through-'-:t the paper, we assume that f and g are continuously differ-

tiable, and that X is closed. Further, we suppose that problem P is con-

sistent. These assumptions will not be repeated in the statements of the

theorems given in the paper. We also note that equality constraints of

the form h i(x) = 0 for i = ,...,Z can be incorporated without any diffi-

culty. In order to keep thp notation and development simple, we chose

to omit their inclusion.

In Section 2, we give two different sufficient conditions that ensure

the existence of an exact penalty ntrict local minimum. Using compactness

of X and the fact that a relatively open cover has a finite subcover, we

establish in Section 1, the existence of a globally exact penalty function.

Finally, in Section 4, we provide some insight into determining the size

of the penalty parameter.
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2. Sufficient Conditions for an Exact Penalty

Strict Local Minimum

In this section, we show that an exact Tenalty strict local minimum

exists under two different conditions. These conditions generalize

similar conditions which are available in the literature in that they

handle the presence of the set X. Particularly, Theorems 2.1 and 2.2

extend similar results of Howe [9] and Han and Mangasarian [8]. respectively.

They assert that there exists a positive number X0 such that if x is a

stzict local minimum for Problem P, then x is also a strict local minimum

for Problem P(X) for all X > X0 * These theorems will be used in the next

section to prove orir main result showing the existence of a globally exact

penalty function.

The following notation and definitions will be used throughout the

manuscript. Given xEX, let

I+ (x) = {i: g i(x) > 0}

I(x) = (i: gi W) < 01

l(x) = {i: gi(x) = O}

x is a strict local minimum for Problem P -+ there exists E > 0 such that

f(x) > f(x) for each x $ xEX such that I1x-xII < c and gi(x) < 0 for

i1 = ,...,m.

x is a strict local minimum for Problem P(X) F-) there exists c > 0 such that

e(x,X) > O(x,X) for each x -, xEX such that Ilx-xH1 < E.
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Next, we need to provide suitable tangential approximations to the

set X at a point xEX. Following Rockafellar [14], consider the contingent

cone K(x) and the cone of hypertangents H(x) defined below:

yeK(x) *- there exist a sequence {yk' converging to y and

a positive sequence 1AkI converging to 0 such

that x + XkYkEX for each k.

ytH(x) - for each sequence 'x k  in X converging to X. there

exists a positive sequence {X k converging to 0

such that xk + AyeX for all E(0 ,\)

Note that H(x) is a convex cone which is not necessarily closed and that

K(x) is a closed cone, but not necessarily convex. Further, H(x) C K(x).

Theorem 2.1 below gives a sufficient condition for the existence of an

exact penalty strict local minimum, where the closed convex cone C(x) is

defined by:

ytC(x) - gW(x) ty < 0 for each iEl(x)

Theorem 2.1

Let x be feasible for Problem P and suppose that Vf(x) ty > 0 for each

0 # yEC(x) n K(x). Then:

1. x is a strict local minimum for Problem P.

2. there is a number A0  0 so that for all X > X0' x is

a strict local minimum for Problem P(X).

P'oof

Suppose by contradiction to part (1) that there exists a sequence {x.I

conv.erging to x such that xk # x, <X gixk) 0 for i = l,...,m, and

f(xk) < f(x). Let Yk = (Xk-x)/Ilxk-XII. Then, 'lYk1 1 = 1 and there exist a

subsequence (yk K and a vector y as that Ilyll = 1 and yk y y as k - in K.
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Then, ycK(x). Since gi(xk) < 0 = gi(x) for iel(x), then

- t R.(x'xk-x)

VgY(x) yk + lix k- R _ (1)

where R.(x,h)/l'hll - 0 as IjhlI -I 0. By taking the limit of (1) as k - in K,

it follows that Vgi(x) y < 0 for icI(x). Therefore, y C(x) n K(x). Since

-t
Ilyll = 1, then by assumption, Vf(x) y > 0. BUL

f(xk) - f(x) f(t R(x,xk-x)=f gx) ty k + llkRl(2)

where R(x,h)/Ihl - 0 as 11h))- 0. Since f(xk) < f(x), the left hand side of

(2) is nonpositive while the right aand side converges to a positive number

as k m in K. This contradiction implies that x is a strict local minimum

for Problem P.

To prove part (2), suppose by contradiction that there is a sequence

{A k} such that X k and x is not a strict local minimum for Problem P(Xk).

Thus, there is a sequence {xk } converging to x so that x €x kEX and

0(xk,Xk) < e(x ,Xk) = f(x) (3)

Again, let yk = (xk-x)/Ilxk-Xl. As in the proof of part (1), there is a

vector yK(x) with Ijyll = I and a set K so that yk y as k - - in K. Now

suppose by contradiction that for some JEl(x), Vgj (x) y > 0. Since gj is

continuously differentiable, for k in K large enough, g.(xk ) >g(x) = 0.

Hence, by (3)

f(xk) + Akgj(xk) < 6(xkXk) < f(x)

so that
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f:(xk) - f(x) g(x k ) - gW(x)
+kk xf( +k < 0 (4)

for large k in K. As kEK goes to =, the first term in (4) converges to
Vf(x)ty, [g (x k ) - gj x k-xII converges to Vgj(x) ty > 0, and X k .

Since this is impossible, we conclude that 7gW(x)ty < 0 for each icl(x).

Thus yEK(x) n C(x) and so Vf(x)ty > 0. Since

f(x k ) - f(x) V t R(x,xk-x)

iXk _ l = f(x) yk +

and since R(xxk-x)/Ixk-X-I! 0 and Vf(x)tyk - Vf(x)ty > 0, we conclude that

f(xk) - f(x) > 0 for kcK large enough. But by (3), f(xk) < 6(Xk,Xk) < f(x),

a cokitradiction. This completes the proof.

- t

The assumption that '7f(x) y > 0 for each nonzero vector yEC(x) fn K(x)

guarantees that x is a strict local minimum for Problem P. It also acts as

a qualification that ensures an exact penalty strict local minimum. Theorem

2.2 gives a similar result if x is a strict local minimum to Problem P and

satisfies a suitable constraint qualification that does not involve the

objective function. Theorem 2.2 extends similar results of Pietrzykowski [12]

and Han and Mangasarian (8]. The following lemma is needed to prove the

theorem.

Lemma 2.1

Let x be feasible to Problem P and suppose that there is a vector

-tyEH(x) such that Vgi(x) y < 0 for each iEl(x). Let x% be a local optimal

solution to Problem P(X). If xk -- x as A - o, then x is feasible to

Problem P for A sufficiently large.
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Proof

Suppose by contradiction that there exist a sequence k ' and a sequence

{x k } so that k k a and xk - x, where xk is a local optimal solution to

Problem P(Xk) which is not feasible to Problem P. Since xk - x and g (x) < 0

for all i, then I U I C I(x), where Ik and I denote I(x,

k k k k k'ndI~

respectively. From [7], the directional derivatives of e(*,Xk) at xk along

y is given by:

e'(xk'k'y) = Vf(xk)ty + Xk[ + +Vgi(xk)ty + (Vgi(xk)ty)+] (5)
iElk iEIk

Since gi is continuously differentiable and Vgi(x) ty < 0 for iEl(x), then

there is an E > 0 so that Vgi(xk) ty < - E for iEI(x) and for k sufficiently

large. Thus, (Vgi(xk)ty)+ = 0 for i£Ik and from (5) we get:

6'(Xk ky ) = Vf(xk)ty + e I + Vgi(xk) ty < Vf(xk)ty - C A k l (6)

where il + I is the number of elements in the set Ik Since xk not feasible

to Problem P, then Ik >_ 1. Since X + and Vf(x) ty -) Vf(x) y, then (6)
k- k k

implies that:

e'(XkXkMy) < 0 (7)

for k large enough. But, yEH(x) and xk - x so that there is a ik > 0 so

that xk + .iyEX for each i.e(O,vik). In view of (7), xk could not have been

a local minimum for Problem P(Xk). This completes the proof.

Theorem 2.2

Let x be a strict local minimum for Problem P and suppose there is a

- t
vector yEH(x) such that Vgi(x) y < 0 for each ieI(x). Then, there is a

A0 > 0 so that x is a strict lucal minimum for Problem Y(N) for all X > XO"
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Proof

By Pietrzykowski's theorem [13], there is a number A > 0 so that for

A > XA there exist x and E(X) such that:

115X - Xll < E(X) (8)

uid c(A) = 0 (9)

e(xxX) < e(x,X) for all xeX with rlX- ll < E(X) (10)

By (8) and (9), xA x as A X =. From (8) and (10), it follows that x is

a local minimum for Problem P(X). In view of this and the assumptions of

the theorem, it follows that Lemma 2.1 applies, and hence xX is feasible

to Problem P for X sufficiently large. Thus, from (10) we get:

f(x X) O(xXx) < e(x,A) = f(x)

Since x is feasible for P and xA x, then f(xA) = f(x) for A large enough.

But, since x is a strict local minimum for Problem P, then there is a

number X > 0 so that x. = x for A> A 0 * Thus, for X > AO x is a local

minimum for Problem P(X). We wish to show that it is strict. If not,

there exist a sequence { k} and a sequence {x k } so that Xk - 0 '  # Xk X,

where xk is a local minimu= for Problem P(Xk). By Lemma 2.1, for k

large enough, xk is feasible to Problem P. However, since x is a local

minimum for Problem P(A) for X sufficiently large, then f(x) = e(x,A ) =

6(xk,Ak) = f(xk). We have thus exhibited a sequence {xk} feasible to

Problem P so that x # xk - x and f(xk) = f(x). This contradicts the strict

local optimality of x for Problem P, and the proof is now complete.
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3. A Globally Exact Penalty Function

In this section, we present our main theorem which asserts the exis-

tence of a globally exact penalty function. This is done by requiring the

set X to be compact, in addition to the existence of a suitable qualifica-

tion that guarantees a strict local exact penalty.

Theorem 3.1

Consider Problem P and suppose that the set X is compact. Denote the

set of glc'-l optimal !3ol-tions {xl,...*' to Problem P by Q. Suppose

that for each x.EQ one of the following two conditions hold:J

ta. Vf(x.) y - 0 for each 0 # yEC(x.) n K(x.)

b. there exists a vector yeH(x.) such that Vgi(x)t y < 0

for all icl(x.)

Then there exists a number X0 > 0 such that for X > XO, xX is a global

optimal solution to Problem P(X) if and only if xXEQ.

Proof

Denote the optimal objective value to Problem P by f and consider the

family of sets A(*) and B(s) defined below:

A(X) = {x: e(x,X) - f > 0} (11)

B(X) = A(X) U Q (12)

We first show that B(X) is open in the relative topology of X for X

sufficiently large, that is, given xeB(X) there exists an open neighborhood
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N (x) around x so that X fn Nx(x) C B(A). Since 0 is continuous, then

A(X) is open so that the existence of the desired neighborhood is clear

for xeA(X). Now suppose that x = xEQ. From Theorems 2.1 and 2.2, it

follows under conditions (a) or (b) that xj is a strict local minimum

for Problem P(X) for X sufficiently large. Thus, there exists a neighbor-

hood NX(xj) so that f O(xjA) < 0(y,X) for each xj # ytNA(Xj) n X, which

shows that N (x.) n X B(X).

We have thus proved that there is a number X1 > 0 so that the collec-

tion {B(X): X > 1} is a family of open sets relative to X. Next, we

show that this family covers X. Let xEX and consider the following three

cases:

Case 1: f(x) >

Here, 6(x,X) > f(x) > f for all X > 0

so that xEA(X) CB(X) for all A > 0.

Case 2. f(x) < f

There must exist an index i such that gi(x) > 0. Thus,

for X large enough, e(x,X) > f(x) + X gi(x) > f so that

xeA(A) C B(M).

Case 3. f(x) = f

If gi(x) > 0 for some i, as in Case 2, xEB(X) for X > 0.

If gi(x) < 0 for i = 1,...,m so that x is feasible to

Problem P, then xEQ. Thus, xcB(X) for each X.

Since X is compact, this relatively open cover has a finite subcover. Let

X0 be the largest A in this subcover. Noting that A' >_ implies that

B(X) C B(A'), Lhen

X c B(X) = A(X) U Q for all X > X0

The above set inclusion can be restated as follows. If A > X0 and xeX then

either O(x,X) > T or else xEQ in which case 6(x,X) = f. This is the desired

result and the proof is complete.
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The following example shows that in order to validate the conclusion

of the above theorem, the qualification given by (a) or (b) in Theorem 3.1

must hold for each global optimal solution to Problem P.

Example 3.1

Problem P: minimize f(x)

subject to g(x) < 0

xCX

where,

2 2f(xl,x2) =-x 1 - x 2

(x - (Xl-l) 2  if x

g 19c 2 2  1 1) 1~
guxl,x 2 )  x2 + (x 1 -l)2 if x1 >1

X = {(xl.X ). x + x < 2, x 2 > 01
12 1 2 <2x,'2 -

Note that the set of global optimal solutions Q to Problem P is given by

{(0,l),(!,0)T. Thus, we have:

At x, = (0 1i)t

C(X 1 ) = {(yy 2 ): 2y1 + Y 2 < 01

K(x 1 ) = cfH(x 1 ) {(y 1 'y 2 ): Y1 > 01

Note that 0 # yeC(x1 )n K(xl) implies that Y2 < 0, so that Vf(xl)ty > 0. Also,

t t
there exists a vector ycH(x I) so that Vg(xl) y < 0, say y = (0,-i) . Therefore,

both conditions (a) and (b) of Theorem 3.1 hold at xI.

At x 2 = (1,0) t

C(x2) -{ (yI'y 2 ): Y2 < 0

K(x 2) - cIfl(x 2 ) - {(yI'y 2 ): Y2 > 01
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Vf(x 2)ty > 0 implies that y1 < 0, but no restrictions on Y2 while

C(x 2 ) n K(x2) = {(ylY 2 ): y2 
= 0}, so that condition (a) of Theorem

3.1 does not hold. Furthermore, Vg(x 2 ) ty < 0 implies that Y2 < 0 so

that y H(x2 ). Thus, consition (b) of the theorem is not satisfied.

In summary, the hypotheses of the theorem hold at x1 , but not at

x2. That there exists no X such that the global optimal objective

value to Problem PX is equal to f = -1 is obvious by considering

xA = ( O)eX which yields:

e(Gx) < 8(xl,) + xg(x )+ =- < -1

Since compactness of X and continuity of f imply that f is bounded

below on X, it might at first appear that this boundedness property

would ensure a global exact penalty problem if there is a local exact

problem. The following example shows that this is not the case.

Example 3.2

Problem P: minimize f(x)

subject to g(x) < 0
xrX

f(x) = +
x+5

g(x) = x+l

X2 +1

X = fx: x > -4}

Note that Problem P has solution x = -1 with value f = f(x) f and

are both bounded in X. 8(x,X) = f(x) + Xg(x)+ has a local minimum at

x = -1 for each A . However, for each X > 0, 6(x,X) is arbitrarily

close to 0 when x is large. Thus, it is not true that x = -1 is a

global minimum of e(x,X) for X large enough.
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4. Estimating the Size of the Penalty Parameter

Theorem 4.1 gives some insight into determining a lower bound on the

penalty parameter in terms of the Khun-Tucker multipliers and in terms of

suitable lower bounds of the functions f and g+. Conclusion (1) asserts

the existence of a Kuhn-Tucker multiplier vector at an optimal solution to

Problem P. This is assured by assumptions (a) and (b). Here, the former

acts as a qualification and the latter enables us to use separation of dis-

joint convex sets. We note that convexity of K(x.) is not very restrictive,

and indeed holds if X is convex or smooth at x . Similar optimality condi-

tions can be found in Bazaraa and Goode [1], Guignard [61, and Mangasarian

[10, P. 1681. Concl,,sion (2) of the Theorem shows the existence of a strict

exact local penalty if the penalty parameter exceeds the value of each of

the Kuhn-Tucker Lagrangian multipliers. Here, again, assumption (a) is

used. This assumption can be replaced by a suitable second order sufficiency

condition. A similar result, in the absence of the set X, can be found in

Han and Mangasarian [8]. Conclusions (3) and (4) yield the form of the size

of the penalty parameter needed for a global exact penalty.

Theorem 4.1

Consider Problem P and suppose that the set X is compact. Denote the

set of global optimal solutions {xl,...,xh} to Problem P by Q and denote

f(x.) for jEQ by f. Suppose that for each x. Q the following conditions

hold:

a. Vf(xJ)ty > 0 for each 0 # y C(x. n K(x.).

jmm nnl m ~ i~ n.u n J -
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b. K(x.) is convex.

Then:

1. For each x eQ there exist scalars Pij > 0 for iEI(x.) such that:

[Vf(x.) + I P.. Vg )]ty > 0 for yEK(x.)
iCI(x i )

2. For each xjEQ, there exists a 6. > 0 such that x x., f1x-x.t1 < 6J,

and X > X ' imply that B(x,X) > e(xj,X) = f, where

X.3 > max {P:ij iel(xj)}.

m
3. There exists a number e > 0 so that [ gi(x)+ > e for each xcA n B,

1=1

where A ={x: f(x) B = {xcX: Ilx-xjlI 1 for j = 1,...

and S =min {.: 1 < j < h}.

4. For X > A0 ' xX is a global optimal solution to Problem P(A) if and

only if x EQ, where X0 = maximum ?,.b - } and b is such

that f(x) > --b for tach xcX.

Proof

Part (1)

This part is equivalent to showing that -Vf(x.)cK (xj) + C (x.), where
* *

C (x.) = { a.. Vg.(x.): a.i > 0 for iel(xj)} and K (x.) is the polar
izl(x ) ij * t

cone of K(x.), 4hat is, K (x.) = {y: y z < 0 for each zEK(xj)}. If this

were not the case, by convexity of K (x.) + C (x.), there exist a nonzero

vector c and a scalar a so that:

-ctVf(x>) a (13)

C * *
c y < a or each ycK (x) + C x)(x (14)

Since O:K (x.) + C (x.), then a > 0 from (14). Thus, by (13), ctVf(xj) < 0.

Letting y = Vg (x.) in (14), twhere a.. > 0 for iEI(xj), it follows
iEx(X ) j > 0 13

that CL.. ctvg)(x < a. Since this is true for all a > 0, it
iEl(x.) '3 t - ".-

m um m a nn nmnun Ia n n mmll~m T - -- -
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follows that c tVgi(x) < 0 for each icl(xj) so that cECGx.). Now, consider

* t
zcK (x.). Then c z < 0 because otherwise (14) would not hold for y = Az

3
t *for sufficiently large A > 0. Since c z < 0 for each zeK (x.), then,

ZEK (xj), the polar of K (x.). However, since K(x.) is a closed convex
3 3 3

cone, then K(xj) = K (x.) [2, P. 52].

To summarize, we exhibited a nonzero vector ccC(x.) n K(x.) with the

property c Vf(x < 0. This violates assumption (a). Thus -Vf(x.)EK (x.)

+ C (x.), and part (1) follows.

Part (2)

We first show that x. is a strict local minimum for Problem P(X.).

Suppose, by contradiction, that this is not the case. Then, there is a

sequence {x k } in X so that xk - xjs xk . xj, and

m

f(xk) + Xi g i (xk)+ = e(Xk'AJ) < O(xj'.)X = f (15)

Let yk =  Xk-X )/ fiXk-XjII Then there is an index set K of positive

integers such that Yk - y as keK approaches -. Note that Jyll = 1 and

yEK(x.). It can be easily verified from (15) that

7f(x)t y + X. I (Vgi (x y)+ < 0 (16)
3iCI(X. 1 ) -

From Part (1) and (16) above, we get:

0 A X (Vgi(xj)ty) + - Pij (x )ty > (_.-P.J) (Vgi(x) ty)
-iEI(x.) icl(x.) Vgi x iEI(xj)3

Since A. > P.., the above inequality implies that (Vgi(xj)ty) + = 0, and hence

Vgi(x) ty < 0 for icI(x.). Therefore, yEC(x.) n K(x.). By assumption (a),

Vf(x.) y > 0, which is not possible from (16). Thus x, is a strict local
3 3
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minimum of Problem P(,\.), and there must exist a number 6. > 0 so that x. x,

IIX-x.I < 6. implies that e(x,X.) > e(x.,tj) =f Since e(x,X) > e(x,X ) for

X > X., part (2) follows.

Part (3)

Consider the following sets:

B {x: Ilx-xjll < 6 0 for some x EQ)

m
E(v) = {x: gi W+ > v1, V > 0

F(v) = E(v) U B

Obviously, B, E(v), and F(v) are all open for any v > 0. Furthermore, the
m

open family U F(v) covers A n X. To show this, let xA n X. If . gi(x) = 0
\>0 iOl

then x must belong to Q and hence xEBc F(v) for all v > 0. If
m m

i gi(x) > 0, then xEF(v) for any v < ggi(x)+. Therefore, there exists

a finite subcover, say A n X c E(E) U B for some c > 0. In other words, if
m

xcX is such that f(x) < f, then either gi(x)+ > E or else lx-x l1 < 6
-- i=l

for some x.EQ. Thus part (3) follows.

Part (4)

Noting part (2), it suffices to show that e(x,X) > f for xEB and X >_ X0

If f(x) > f, the result is immediate. Now suppose that f(x) < f so that
mxEA fl B. By part (3), I gi(x)+~. > c" Thus:

i=l

m f +b. -

e(x,x) = f(x) + X gi(x)+ > -b + Ac >_-b + (-)c =f
i

This completes the proof.
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An Extension of Armijo's Rule to Minimax and
Quasi-Newton Methods for Constrained Optimization

Mokhtar S. Bazaraa and Jamie J. Goodet

In this study, we propose an algorithm for solving a minimax problem
over a closed convex set. At each iteration a direction is found by
solving a problem having a quadratic objective function and then a suit-
able step size along that direction is taken through an extension of
Armijo's approximate line search technique. We show that each accumula-
tion point is a Kuhn-Tucker solution and give a condition that guarantees
convergence of the whole sequence of iterates. The special cases of uncon-
strained and constrained nonlinear programming are studied. Through suit-
able choices of the quadratic form, our procedure retrieves various steepest
descent and quasi-Newton algorithms for unconstrained optimization. For
the constrained case and using an exact penalty function to handle the
nonlinear constraints, our algorithm resembles that of Han, but differs
from it both in the direction-finding and the step-determination processes.
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1. INTRODUCTION

In this paper we consider the following problem:

P: minimize e(x)

subject to xEX

Here X is a closed convex set in Rn and 8 is of the form:

z
6(x) = f(x) + I CL (x)

j=l 

ci.(x) = max {Si .(x)} j=l,...,
inl.

-J

We assume that I. is a finite set of positive integers and that the
3

functions f and a.. irc continuously differentiable on an open set S that

contains X.

Minimax problems of the above type arise in various contexts and have

been studied by many authors. For an excellent exposition of this subject,

both from theoretical and algorithmic points of view, the reader is referred

to the works of Danskin [5], Demyanov [6], and Demyanov and Malozemov [7].

The reader is also referred to Chatelon, Hearn and Lowe [4] and Han [111 for

the special case of unrestricted minimax problems ar.d to Madsen and Schjaer-

Jacobson [15] for the linearly constrained minimax problem.

In addition to Problem P itself, the special case where a.(x) = 0 for

each j has been extensively studied. In [10], Goldstein described a gradient

projection method for solving the problem to minimize f(x) subject to xcX,

and a similar procedure was proposed by Levitin and Polyak [14]. These

methods proceed as follows. Gi -n Xk' the next point Y i is determined bv
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projecting Xk-vf(xk) on X, where Ak is a suitable step size that depends

on the Lipshitz constant associated with Vf. In [16], McCormick proposed

an anti-jamming procedure for solving the problem in the special case where

X consists of bounds on the variables, and in a joint paper with Topia [171,

the procedure was extended to the case of a general closed convex set. In

[3], Bertsekas further studied this class of methods with emphasis on the

choice of the step size. He also described various ways of achieving super-

linear convergence.

We also note the class of subgradient optimization methods for solving

the problem to minimize '(x) subject to xEX in the case where f is convex

but not necessarily differentiable. Similar to the methods described above,

given a point Xk, Xk+1 is computed by projecting Xk- k~k on X, where Ek is

any subgradient of f at xk. For conditions on the step size Xk that assure

convergence, the reader is referred to Polyak [18,19].

In this paper, we propose an algorithm for solving Problem P. We con-

cern ourselves primarily with global convergence properties of the algorithm.

Local and superlinear convergence through appropriate choices of the quadratic

approximation are only discussed very briefly. At any iteration the algorithm

solves a subproblem that finds a search direction and then takes a suitable

step along that direction. In the case where X is polyhedral, the direction

finding problem reduces to a quadratic program, and in that respect, our

method resembles quasi-Newton procedures for solving constrained nonlinear

programs. Our direction-finding problem is also similar to the one proposed

by Han [111 for solving minimax problems and primarily differs from it in

the i-nclusion of the set X. The step size along the search direction is

obtained through an extension of Armijo's [1] rule that handles the nondif-

ferentiabili y of the objective function 8.



68

In Section 2, we introduce an approximation to the directional deri-

vative that maintains continuity. This approximation is the key tool in

overcoming the difficulties associated with discontinuity of the directional

derivative in determining a search direction. In Section 3, we present our

algorithm and in Section 4, we prove its convergence to a stationary point.

Section 5 is devoted to various specializations of our method. Particularly,

we discuss the cases of unconstrained and constrained nonlinear programming.

For unconstrained problems, depending on the choice of the direction-finding

problem, our algorithm gives rise to different.steepest descent and Newton-

type algorithms coupled with the efficient Armijo's step size rule. For

constrained programs, linear constraints are handled by the set X and non-

linear constraints are treated by an exact penalty function. As a byproduct,

a slight modification to the method of finding a search direction for the

class of quasi-Newton methods is suggested. This modification overcomes

the difficulty of premature termination in case the linearization of the

feasible region at the current point is empty.
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2. APPROXIMATING THE DIRECTIONAL DERIVATIVE

Note that the objective function 6 is not differentiable but has a

derivative along any direction d. Particularly, the directional deriva-

tive 6'(x,d) is given by:

tt
6'(x,d) = Vf(x)td + I max f V ij(x) dl (2.1)

j=l iElj (X)

where

Ij(x) = i : aij (x) = ax(x)} (2.2)

Since 6' is not continuous in x, a difficulty which could ultimately lead to

jamming, we introduce the following approximate directional derivative e (x,d)

which is continuous in both x and d:

z
S*(x,d) = f(x) + Vf(x) td + I max ( ij(x) + VSBij(x) td}-O(x) (2.3)

j=l i CIl.

If the functions f and aij satisfy a strong version of differentiability,

which we refer to as upper uniform differentiability, then a one-sided second

order approximation of 6(x+Xd) using the pseudo directional derivative

e (x,d) can be devised. As will be seen in the remainder of the paper, this

approximation is instrumental in proving convergence of the proposed algo-

ri thm.
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Definition 2.1

Let S be an open convex set in Rn and let f: Rn-R. f is said to be

upper uniformly differentiable in S if f is continuously differentiable in

S and if there is a number Kf > 0 so that

f(x+d) < f(x) + Vf(x) td + 1/2 Kp1dB 2  (2.4)

whenever x, x+dES.

Note that if f has a Lipschitz continuous derivative in S then it is

upper iniformly differentiable. That is, if there is a number 1/2 Kf so

that

fIVf(y) - Vf(x)I < 1/2 Kf tlx-[ for x,yeS

then for x and d such that x, x+deS, by the mean value theorem, we can

write

f(x+d) - f(x) = Vf(y)td

for some y between x and x+d. But then

f(x+d) - f(x) - Vf(x) td = [Vf(y) - Vf(x)]t d

< 1/2 K f Ijy-xj dlj

< 1/2 Kf Id 112

and hence f is upper uniformly differentiable in S.
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Lemma 2.1

Let S be an open convex set in Rn and suppose that f and 8ij for

iel. and j=l,...,Z are upper uniformly differentiable in S. Then, thereJ

is a number K > 0 so that the following hold for all x,x+dES:

1. 6(x+d) < 6(x) + 0 (x,d) + 1/2 K 11412

2. 0*(x,Xd) < X6 (x,d) for all Ac[0,1

3. 8(x,Xd) < 6(x) + X6 (xd) + 1/2 X2K I d!!2  for all Xe[0,1]

Proof

Since f and 8ij are upper uniformly differentiable, then there exist

scalars Kf and Ki > 0 so that:

f(x+d) < f(x) + Vf(x) td + 1/2 Kf lldlf (2.5)

8i (x+d) < ij(x) + Vij (x) td + 1/2 Kij IId!12  (2.6)

for all x, x+dcS. Let K =imax K and suppose that x, x+deS. Then from

(2.6) we get:

8ij (x+d) < aiJ (x) + V$ (x) td + 1/2 Kj I Idl! 2

< max {Srj(x) + V$rj(x) td} + 1/2 K. Ild!!
r~j

cLj(x) + CL (xd) + 1/2 K. Ildl12  (2.7)

where

Oj(xd) = max {8 .(X) + r(x)td} - t(x) (2.8)

rEl rj
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Since (2.7) holds for each icI., then

a.(x+d) < Cx(x) + a.(x,d) + 1/2 K. (2.9)

Summing (2.5) and (2.9) for j=l,...,Z and noting (2.3) and (2.8) we get:

6(x+d) < 6(x) + 0 (x,d) + 1/2 K Idl 12

where

z
K = K + K. (2.10)

f j=lJ

which proves part (1). Now let Xc[0,1] and consider a.(x,Xd) below:J

C. (x,,d) = max { .. + XV0. .(x)td} - c. (x)iE i Ij ij i

= max {X[aij + Va ij(x) td] + (l-X)0ij - W(x)
iEl.

< X[a (x) + a (x)] + (l-X)cj(x) - aj(X)

- a.(x) (2.11)3

Thus, part (2) follows immediately from (2.11). Now part (3) is obvious

from parts (1) and (2) and the proof is complete.
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It is well known that

e(x+Xd) = O(x) + X e'(x,d) + O(d,X)

where

O(dA) - 0 as -0
+

X

uniformly in d with IIdli= 1 (see for example Demyanov and Molozemov [7,

p.53]). However, conclusion (3) of the lemma would be false if 0 (x,d)

is replaced by e'(x,d). This is evident by considering e(x) = lxi which

corresponds to f(x) = 0, 1 = , f 1l(x) = x and B2 1 (x) = -x.
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3. DESCRIPTION OF THE ALGORITICM

We present below a procedure for solving Problem P.

Initialization Step

Choose xEX and choose 616 with 0 < 26 < 6 Let k=l and -c to Step 1.
1 2 1 ~2'Ltk n ot tp1

Step I (Find a direction)

Given XkEX, let Bk be a positive semidefinite matrix satisfying

dtBkd < 62 11412 for all dER
n

Consider Problem D(x ) below:

D(xk) : minimize a (Xk,d) + 1/2 d Bkd

subject to xk + dEX

If Problem D(xk ) has an unbounded optimal solution go to Step 2. Otherwise,

let dk be an optimal solution to Problem D(xk). If 6 (xk,dk) = 0; stop. If

*(xk,dk ) - 1 Id 2, go to Step 3. If S (xk,dk} > - 51 }d2, go to Step 2.
k) < d) 61 k'1 .

Step 2 (Modify the search direction)

Replace Bk by [I - (251/62)]Bk + 261 1. Let dk be an optimal solution to

Problem D(xk) and go to Step 3.
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Step 3 (Find Armijo step size)

Given xk and dk, let mk be the smallest nonnegative integer v such that:

(I ) Vd ) i.+i e• x~
Q(xk + 2 k - e(xk) < (7) O(xk'dk)

Let Xk1 xk + (2)kdk. Replace k by k+l and go to Step 1.

By convexity of X it is clear that the algorithm always generates

feasible points to Problem P so that xkeX for each k. The direction-

finding problem is equivalent to:

D' (xk) : minimize f(xk) + Vf(x)td + 8 y - @(x) + 1 dtB d
K~k + Vxk j k 2 k

subiect to y > B.j(xk) + VBij(x)td iEI., j=l,...,Z
-J iii KJ

xk + dEX

In the next section, we show that e (xk,dk) = 0 if and only if Xk is a

Kuhn-Tucker point to Problem P' defined below:

Z
P': minimize f(x) + Z

j=l

subject to yj > ij(x) iEIj, j=l,...,1

x X

S itce this latter problem is equivalent to Problem P, then the algorithm

stops only when a Kuhn-Tucker solution is at hand.

If X is polyhedral, then Problem D(x%) is a convex quadratic program.

Note that in Step 1, we do not require Bk to be positive definite. In fact,
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the case where B k= 0 is of special interest since it leads to a linear

program. If the optimal solution is unbounded, however, B k is modified

slightly in Step 2 in order to guarantee a bounded optimal solution d k

Note that the identity in Step 2 can be replaced by another sufficiently

positive definite matrix if that is deemed more desirable.

Step 2 is also needed for cases where the pseudo directional deriva-

*2
tive e goes to zero too fast compared to Idji This would cause the Ar 0j

integers ik's to become large. Step 2 recomputes d k with a positive defi-

nite quadratic form to prevent this and to assure the uniform upper bound

on m~k given by Lemma 3.1. Note also that if Step 2 is used then the new

vector d kautomatically satisfies e (x kd k~ ) < kJ tisas n

~k k k- 1 k

needed. This follows dirently from the fact that 0 > 8e (x,,,d ) + 1 dtjBd.

Therefore, If B k is chosen to be sufficiently positive definite so that

d t kd > 261li 11 for all dcRn1, then Step 2 is never used. As will be

demonstrated in S::ztion 5, in some special cases, we can devise schemes

for generating a nonpositive definite matrix B k in such a way that it is

a priori guaranteed that d tB d L 511d 11 which eliminates the need fork kdk 1 k

Step 2.

Lemma 3.1

The integers m.k's defined in Step 3 of the algorithm exist and m, < [y]+ 1,
KK

where (y] is the greatest integer in y, and y = n (6.1)i'Zn 2, where K is

given by (2.10).

Proof

By part (3) of Lemma 2.1 we have:

O(xk + d!)dd+) 1e)2k) l + 2vdl2k )-O~k <(-219 e(xd) k ) ~k''
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4. GLOBAL CONVERGENCE

In this section, we prove global convergence of the scheme described

in Section 3. The following two lemmas are needed. Lemma 4.1 asserts that

the algorithm stops only if the point at hand is a Kuhn-Tucker solution to

Problem P', which is equivalent to Problem P. The second lemma shows that

if x, x + dEX and if {x I in X converges to x, then there is a direction d

sufficiently close to d such that xk + deX for large k.

Lemma 4.1

Let xEX. Then (x, a(x)) is a Kuhn-Tucker solution to Problem P' if and only

if 8 (x,d) - 0, where d is any optimal solution to Problem D(x) to minimize
* 1 dt

a (x,d) + d Bd subiect to x+dEX and where B is positive semidefinite.

Proof

Let d be an optimal solution to problem D(x). Further suppose that 8 (x,d) = 0.

Since d = 0 is feasible to Problem D(x) and has an objective value equal to 0,

and since B is positive semidefinite, then dtBd = 0. Thus, the optimal objec-

tive value is equal to 0 so that d 0 is an optimal solution to Problem D(x).

Therefore, (d = 0, y = c(x)) is an optimal solution to Problem D'(x). This

further implies that the Fritz John conditions stated in [2] hold at (d,y).

That is, there exist nonnegative scalars u 0 and v i, not all equal to 0, such

that:

[u 0 Vf(x) + uoBd + j i vij7Bij(x)]t(d-d) > 0 if x + deX (4.1)
j=l igl.

u- vij = 0 j ,..., (4.2)

iEtI
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At

vij[Y.- i ij(x) - V~ij(x)t d] = 0 iE., j =1...,1 (4.3)

Note that u0 > 0 because if u0  0 then by (4.2), vi. 0 for all i,j,

which is impossible. Noting that d = 0 and that u0 > 0, (4.1), (4.2), and

(4.3) show that (x,a(x)) satisfy the Kuhn-Tucker conditions for Problem P'.

Conversely, suppose that (x,y = a(x)) is a Kuhn-Tucker solution to

Problem P'. Then there exist scalars uii > 0 for il i and j = 1,...,Z such

that:

z
[Vf(x) + 1 u ijV ij(x)] d> 0 if x + dcX

J=l iEI.

u.. = j = 1,...
ieI

u ijly -ij W) = 0 iEIj, j = 1,...

These conditions are precisely (4.1), (4.2), and (4.3) with d = 0, u = 1,

v.. = u... Therefore, (d = 0, y = a(x)) is a Kuhn-Tucker solution to Problem

D'(x). Since this problem is convex, then this solution is optimal. Clearly,

Problems D(x) and D'(x) are equivalent and hence d = 0 is an optimal solution

to Problem D(x). Thus the optimal objective value is equal to 0, and hence

any optimal solution d to Problem D(x) must satisfy e (x,d) = 0. This follows

because if e (x,d) < -z for some z > 0, then

S- 2 -2

for x > 0 and sufficiently small, violating the fact that the optimal objec-

tive value for Problem D(x) is equal to 0. This completes the proof.
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Lemmra 4.2

Let X be a ccnvex set in Rn and let xEX. Let d # 0 be such that x + dsX

and let {xk} be a sequence in X converging to x. Then given an E > 0, there

exists a vector d such that ld-dlj < e and xk + dEX for k sufficiently large.

Proof

Let ri(X) denote the relative interior of X. Then there exists a point

y $ x + d such that yeri(X). Now consider d given by

x -xd)
d = d + - - where

6 min i 22 2

Then

x + d (x + d) + 6Y--d

Iy-R-al I y + (I yx- I (x + d)

Thus, x + d is a convex combination of y and x + d so that x + dcri(X). There-

fore, there exists a z > 0 so that if jx + d - h,1, < z and if h lies in the

affine manifold generated by X then hzX. Since x.k , x, x + dEX, it is clear

that xk + d is in the affine manifold generated by X. Now let h = x+ d.

Then (ix + d - hhj = j-z - xkII, and since xk -, x, it follows that I!,x + d) -

(xk + d)jj < z for k sufficiently large so that xk + dEX. This completes the

proof.

Now we are ready to state our main convergence theorem. The theozL.n

shows that each accumulation point x curresponds to a Kuhn-Tucker solution

(x,ct(x)) to Problem P'. As a corollary, we demonstrate that if x is a strong
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local vinimum then indeed the whole sequence (x } converges to x. Here, x
k

is a strong local minimum to Problem P if there exists a number y > 0 so

that for each 6 > 0 there is a number z(,) > 0 so that

xEX, fIx-Th[< y, and e,6x) - O(x) < z(6) => jjx-xfl< 6 (4.4)

Theorem 4.1

Consider the algorithm described in Section 3 for solving Problem ?. If the

algorithm stops at iteration k then .x.,L(xk)) is a Kuhn-Tucker point for

Problem P'. Otherwise the algorithm generates an infinite sequence {(.X,,dk)).

In this case, if (x,d) is an accumLlation point, Lhen:

1. lim dk 
= 0 and in particular d = 0.

k-

2. (x,cL(x)) is a Kuhn-Tucker point for Problem P'.

Proof

If the algoritl-'n stops at iteration k then 6 (xk,dk) = 0 and by Lemma 4.1

it follows that xk,ct(xk)) is a Kuhn-Tucker point for Problem P'. Now sup-

pose that the algorithm generates the infinite sequence (xk ,d k)} and suppose

that there is an infinite set K of positive integers such that (x. ,d ))(x,d).

K
First, note that G(xk) is decrpasing and that e(Xk)) S(x), and hence

lir &(xk) = W(x). Also we have
k-c

6(x )- 6 (X) < + *Xmk+l 1 dkI2 for all k
K k k' (kd 2- k

and hence the right hand side mu.t corverg- to 0. But by Lemr-a 3.1, - is

bou,dcd above so Lhat d. - 'j, and particulariv d 0. This proves part (1).

kI I ThisIIproils parItI(I).
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Since dtBkd < 6 2I1djl2 for all dER n and all k, then there Lxists an
__ K'

infinite set of positive integers K' =- K such that Bk K B, and furthermore

B is positive semidefiniLe. Now, suppose by contradiction to Part (2)

that (X,ct(x)) is not a Kuhn-Tucker point for Problem P'. Then by Lemma

4.1 an optimal solution d' to the problem to minimize 6 (x,d) + : d Bd2

subject to x + dcX must satisfy 6 (x,d') < - z for some z > 0. By con-

tinuity of e and by Lemma 4.2, there exists a vector d such that

9 (xk,d) < - z and xk + dEX for kEK' sufficiently large. By Lemma 2.1,

for AE(0,1) we have:

* 12dtk * . i t~k

8(Xk,Xd) + X d B d< X6(xk,d) + 1 B d
K 2 k - ~2 k

1 X22
< -Xz + - X6! dl 2

- 2 2'

z 1^2 t
Let , min {l, } Then " d) + Ad Bk d62 lldHl (kXd)~ +- < -h, where

z - 62 [[dJJ2  if z >_ 62 [[d[J 2

h 2 22-6 ldfl if z < 62 [id]l 2

1 zif z < 2 jdl 2

2 6 2 flj12 2

We ha-e thus constructed a vector d Ad so that xk + dEX for large ksK' and

furthermore e (xk,d) +-- d-h < 0. But since d, solves Problem D(xk),

then * (xk,dk) + 1 dkBkdk < -h. Letting k in K' approach - and ncting that

d = 0, ic follows that 0 < -h. This contradiction proves part (2).

Corollarv

If the accumulation point x is a strong local minimum for Problem P, then

lirn x.
k-
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Proof

Let y > 0 be the number given in the definition of a strong local minimum.

Fix 0 < 6 <2. We will show that there exists an Z such that Ilxk-XII <
K -

for all k > ?, which proves the result. Since d,. - 0 and x * x , then there

is an ZEK such that

Ijxt-xfl< 6, 6(xZ) - e(x) < z(6), IjdkI[< 2 for all k > Z (4.5)

We show the desired result by induction. For k = e, the result immediately

follows from (4.5). Now let k > Z and suppose that llXk-XI1 < 6 and note that:

IIXk+1-Xll < llXk+l-Xkll + l[Xk-Xli < lldkll + 6 < + 2= (4.6)

Further, since < 0(xZ), from (4.5) if follows that 8(x k+ ) - e(x) < z(6).

In view of (4.6) and (4.4) it is then clear that lixk+l-xll < 6. This completes

the induction argument.

It may be noted that if the directions generated by the algorithm do not

converge to zero, then e(xk) - -- so that the problem has an unbounded solution.

This follows by noting that 0 is decreasing and that if there existb a set of

positive integers K so that Idkil > 6 > 0 for kEK, then

6(xk+I) - e(xk) < - (1) mk+l k) mk+l 2

<- (b)[y]+2 61C2 for each kEK

If "x. e(x) < 6(x ), xcXM is compact then rxk} has an aucumulation point. If

the functions f and ij for all i,j are convex, then every accumulation point

is an optimal solution to Problem P.
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5. SPECIAL CASES

In this section, we discuss various specializations of the algorithm

to unconstrained and constrained nonlinear programming problems.

Unconstrained Nonlinear Programming

Here we let X = Rn and a .(x) = 0 for j l,...,Z. Under different
J

choices of Bk our algorithm produces various methods for solving the pro-

blem to minimize f(x) subject to xeRn.

Steepest Descent Methods

At any iteration k the direction-finding Problem D(xk) is to minimize

Vf(xk) td + 1 d d. The following choices of Bk are examined. For each of

these choices all entries of Bk are uniformly bounded so that any sequence

{B k } has a convergent subsequence as needed in Theorem 4.1.

Steepest Descent Under the Euclidean-Norm

Let Bk = I. Iere dk = Vf(xk) and d2Bkdk = -IVf(xk)I 2 , where 1W11 denotes

the Euclidean norm. Note that 8 (xk,dk) = Vf(xk) = -!d kl 2  that Step 2

o" the algorithm is never used by letting 6. = 1. In this case, our algo-

rithm reduces to that of Armijo [1]

Steepest Descent Under the Sup-Nor

Let Bk be a diagonal matrix whose ith diagonal entry b. is given by

b/f (xk) ''l1

where 11'11 denotes th- Z -norm. Note that B is positive semidefinite. An
o d oek

optim.al solutioi. d kto Problem D(x k ' is given by
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- 1FVf(xk)1f if f(xk)/x i > 0

dik 1lvf(X)Il 1  if f(xk)/ xi < 0

0 if Df(xk )/x i = 0

* Vf(ktd IT .2
Note that * (x.k,dk) =f(xk) = IVf(xk)il = jdkl s, where ;-!Js denotes the

sup-norm. If we let 1 = 1, it is clear that Step 2 of the algorithm is never

used.

Steepest Descent Under the Z -Norm

Let I" denote the sup-norm and let

i= f (xj,)/axjci = I f x )  i = 1 ,... ,

Let I i 1 1, and without loss of generality suppose that I {l,...,vl

Let

dt = (Cl ... ,c)

e -( (C~ ,...,c)
et ( V4-l c n

Now consider the matrix Bk given below:

v columns n-V columns

ddt 0 v rows

Bk

dt n-n re d 4 I n- rows
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We will demonstrate that Bk is positive semidefinite, give the form of an

optimal solution dk which turns out to be a steepest descent direction under

the Z1-norm, and then show that Step 2 of the algorithm is not needed. Let

V n-\-
y and z be arbitrary vectors in R and R . Then.

t t t t t t n-Vt

(yt,z t) B (Y) = ytd dty + z te d y + -- z Z

tdt

Denote y d by a and z te by g. Then, the above equation yields:

(yt,zt) B (Y) = (a + _ g) 1 g2 - Z t z (5.1)
( z 2 4Y ~ )

By the Schwartz inequality and noL-ng that the absolute value of each com-

ponent of e is less than 1, we have:

22 22

g 2 Ilell 2  zj2 < (n-,) lzjj2

From (5.1) it is then clear that Bk is positive semidefinite. Next note that

dk given below is a solution to the system Vf(xk) + Bkd = 0, which shows that

under rhis particular choice of k' our quadratic program yields a steepest

descent direction under the Zl-norm.

1 af (xk)

ax.

1

dik =

( i = vH-l,.. .,n

Finally, note that

S(xk f()tdf(xk)
2  dk 

(X dk) f k ;X. Ji = -1(d
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where 11.11, denotes the Zl-norm. Therefore, Step 2 of the algorithm is not

needed by letting 6 1 = .

A Newton-Type Method for Unconstrained Optimization

In [9], Gill and Murray proposed a Newton-type procedure that produces

a positive definite matrix Bk through a modified version of Cholesky's

factorization of the Hessian Hk. If Hk is sufficiently positive definite

then Bk = Hk . Otherwise Bk is of the form k + Ek2 where Ek is a diagonal

matrix with nonnegative elements.

If during the factorization process of Hk into the form LDLt, a dia-

gonal element of D is not sufficiently positive, then it is replaced by a

suitable positive scalar q. The factorization is stable and can be performed
3

within-L- multiplications. At the end, B = LkDkL is at hand and the
B k k k k

search direction d is obtained by solving the system Vf(x) + L D L t d = 0.
kk kk k

t [2foandeid
One can easily choose the scalar q so that y Bky > 2i for any desired

51, thus eliminating the need for Step 2 of the algorithm.

The above scheme of Gill and Murray [9] can thus be used in conjunction

of our algorithm. If the Hessian at any accumulation point of the method

is sufficiently positive definite, this method reduces to Newton's method,

and quadratic convergence is assured.

Constrained Nonlinear Programming

Consider the following nonlinear programming problem:

NiP: minimize f(x)

subject to gj(x) < 0 j = 1,...

Recently, a great deal of attention has been given by many authors to extending

quasi-Newton procedures from the unconstrained case so that they can handle
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problems of the above type. For a review of these methods, the reader is

referred to Garcia-Palomares and Mangasarian [8], Han [13], and Powell [20].

A typical method in the class of quasi-Newton methods proceeds as

follows. Given xk, let dk be an optimal solution to the following problem:
kI

D(xk): minimize +f(xk)td +-! dtBkd
2 k

subject to gJ(xk) + V (xk) td < 0 j l,...,m

If x, is sufficiently close to a Kuhn-Tucker point x and if B is sufficiently
K k

close to the Hessian of the Lagrangian at x, then the algorithm Xk+ = xk + dk

converges to x at a superlinear rate.

In [12], Han was able to prove convergence of the procedure starting

from points remote from x. He showed that if p is sufficiently large so

that p > u. for j = l,...,m, where u. is the Lagrangian multiplier associatedJ J

with the jth constraint in Problem D(x k) , then dk is indeed a descent direc-kI
m

tion for the penalty function O(x) = f(x) + w X max {0,gW(x)} at x . He
j=l

was able to show global convergence by letting xk+1 
= xk + Xkdk) where Xk

essentially solves the problem to minimize 4(xk + Xdk) subject to 0 < X < 6,

where 6 > 0 is a fixed number.

We will now show that our minimax algorithm specializes to Han's method

and extends it in two ways. First, rather than performing a line search, our

procedure uses the easily implementable Armijo's search. In [121, Han suggested

that it is of some practical value to devise such an approximate search pro-

cedure for the nondifferentiable function i. Second, a typical quasi-Newton

method could stop prematurely if Problem D(xk) has an empty feasible region,

that .s, if there exists no vector p such that V (xk ) tp < 0 for jEI, where

" ' . , i I Ij k
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I = {j: gj(x%) > 0}. As will be seen shortly, our direction-finding problem

is always feasible, and furthermore it reduces to Problem D(xk) if the latter

is feasible.

Note that Problem NLP can be put in the minimax format as follows.

Let t = m and let a J(x) max {O,gj(x)}, where ii is an exact penalty para-

meter. Then Problem P becomes:

z
minimize f(x) + i max {0,g (x)}

J =1 J

At any particular iteration, our direction-finding problem reduces to:

m

t
D'(x,): minimize Vf(xk)td + J I yj + 1 td

j=l~ d~

subject to g.(xk) + Vgj(xk)td < yj j =

Yj >0 j

The relationship between problems D(xk) and D'(xk) is given by Lemma 5.1 below.

Lemma 5.1

If Problem D(xk) is not feasible then any feasible point (d,y) to Problem

m
D'(x) must have I y. > 0. Now suppose that Bk is positive semidefinite and

j=l k

symmetric. Further suppose that Problem D(xk) is feasible and that it has

(d, u) as a Kufn-Tucker solution. If i > u i for j =,...,m, then (dk,Y=O)

is an optimal solution to Problem D'(xk). Further, if Bk is positive definite,

then any optimal solution (d,y) to Problem D'(xk) must satisfy y 0 and d = dk.

Proof

Obviously, if Problem D(xk) is not feasible then any feasible point (d,y) to
m

Problem D'(x k ) must satisfy Z y. > 0. Now suppose that (dk,u) is a Kuhn-Tucker

j=-
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solution to problem D(xk). Then:

m
Vf(xk) + Bkdk + I ujVgj(xk) = 0

uj [gj(x k) + Vgj(xk)tdk) = 0 j = 1,...,m

g (xk) + Vgj(xk)tdk < 0 j = 1,...,m (5.1)

U. > 0 j = 1,...,m.2-

But (d,y) is a Kuhn-Tucker solution to Problem D'(k k if there exists a vector

v such that

m
Vf(xk) + Bkd + Ivjgj(Xk) =0

k j=l j ~k

- v. > 0 j =I....m
.2-

v. [gjOx) + Vg.(xk td - yj] 0 j 1,...,m (5.2)

gj(k) + g(xk)d _yj

d. _ 0 j l ... ,m
j -- )+Vg x) ^<

V. > 0j

- vj)y = 0 j 1,...

Noting that p > uj, it follows that the system defined by (5.2) holds by

leCting d = dkP y = 0, and v = u. By convexity of Problem D'(xk) it follows

that (dk, :=O) is indeed an optimal solution.

Now suppose that Bk is positive definite and let (d,y) be an optional

solution to Problem D'(xk). Therefore X(d,y) + (l-A)(dk, 0) is also an optimal
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solution for all XE(0,1). This further implies that Y(X) defined below is

constant for all Xe(0,i):

m

T(X) = Vf(xk)tdk XVf(xk)t(d-d ) + XP Y

1 B d + ' X2(d-d )tB (d-d

+2 dkk 2 k k k

+ X(-d k) tBBkdk

This implies that 4'(X) = 0 for Xc(0,1) and hence

m

Vf(X k) (d- k ) + (2-d k) tB kd k + 1 TL YJ +

(5.3)

X(d-.dk)tBk(d-dk) 0 for all (0,l)

~' t
But this is possible only if (d-d k ) B.(d-dk) = 0, and since Bk is positive

definite, we must have d = d . From (5.3) we have y = 0 and the proof is

complete.

The above lemma shows that if Bk is positive definite and if 'i is suffi-
m

ciently large, then an optimal solution to Problem D' (xk) has L y. > 0 only
j=l 3

if Problem D(xk) is not feasible. To illustrate, consider the problem to

minimize f(x) subject to g(x) < 0, where f(x) = (x-2)2 and

1 - (x-l) 2  x < 1
g(x) =

1 otherwise

If the starting solution is x 1 1, then Problem D(x1 ) is infeasible and the
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quasi-Newton method would stop prematurely at the infeasible point xI. Our

minimax algorithm will not stop at this point ans would eventually converge

to the optimal solution x 0. It is thus proposed that quasi-Newton methods

should solve Problem D'(xk) rather than Problem D(x k ) in order to 
find a

search direction dk '

. . .. - • mm m m | | • -k
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AN ALG3OT,14M FOR LINEARLY CONSTRAINED
NONLINEAR PROGRAMMING PROBLEMS

t
Mokhtar S. Bazaraa and Jamie J. Goode'

In this paper an algorithm for solving a linearly constrained nonlinear

programming problem is developed. Given a feasible point, a correction vector

is computed by solving a least distance programming problem over a polyhedral

cone defined in terms of the gradients of the "almost" binding constraints.

Mukai's approximate scheme for computing step sizes is generalized to handle

the constraints. This scheme provides as estimate for the step size based on

a quadratic approximation of the function. This estimate is used in conjunc-

tion with Armijo line search to calculate a new point. It is shown that each

accumulation point is a Kuhn-Tucker point to a slight perturbation of the

original problem. Furthermore, under suitable second order optimality condi-

tions, it is shown that eventually only one trial is needed to compute the

step size.

School of Industrial and Systems Engineering, Georgia Institute of Tech-

nology, Atlanta, Georgia. This author's work is supported under USAFOSR
-ontrarc number F49620-79-C-0120.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia.



9b

1. Introduction

This paper addresses the following linearly constrained nonlinear pro-

gramming problem:

P: minimize f(x)

subject to Ax < b

where f is a twice continuously differentiable function on Rn , and A is an
t

?Zxn matrix whose jth row is denoted by a., and where a superscript t denotesJ

the trinspnse operation.

There are several approaches for solving this problem. The first one

relies on partitioning the variables into basic, nonbasic, and superbasic

variables. The values of the superbasic and basic variables are modified

while the nonbasic variables are fixed at their current values. Examples of

methods ir this class are the convex simplex method of Zangwill [181, the

reduced gradient method of Wolfe [17], the method of Murtagh and Saunders [12],

and the variable reduction method of McCormick [8].

Another class of methods is the extension of quasi-Newton algorithms from

unconstrained to constrained opti-nization. Here, at any iteration, a set of

active restrictions is identified, and then a modified Newton procedure is

used to minimize the objective function on the manifold defined by these active

constraints. See for example Goldfarb [6], and Gill and Murray [5].

Other approaches for solving problems with linear constraints are the

gradient projection method and the method of feasible directions. The former

computes a direction by projecting the negative gradient on the space ortho-

gonal to the gradients of a subset of the binding constraints while the latter

method determines a search direction by solving a linear programming problem.
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For a review of these methods the reader may refer to Rosen [141, Zoutendjik

[19], Frank and Wolfe [4j, and Topkis and Veinott (15].

In this paper, an algorithm for solving problem P is proposed. At each

iteration a correction vector is computed by finding the minimum distance

from a given point to a polyhedral cone defined in terms of the gradients

of the "almost" binding constraints. An approximate line search procedure

which extends those of Armijo [1] and Mukai [10, 11] for unconstrained opti-

mization is developed for determining the stcp size. First, an estimate of

the step size based on a quadratic approximation to the objective function is

computed, and Cha .,djus._d if necessary.

In Section 2, we outline the algorithm. In Section 3, we show that

accumulation points of the algorithm are Kuhn-Tucker points to a slight per-

turbation of the original problem. Finally, in Section 4, assuming that the

algorithm converges, and under suitable second order sufficiency optimality

conditions, we show that the step size estimates which are based on the quad-

ratic approximation are acceptable so that only one functional evaluation is

eventually needed for performing the line search.

2. Statement of the Algorithm

Consider the following algorithm for solving Problem P.

Step 0

Choose values for the parameters c, z, 6, and £. Select a point x0 such that

Ax0 < b and let 6. Let i = 0 and go to Step 1.

Step I

Let w i bc the optimal solution to Problem D(x i) given below:
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D(x minimize Vf + 2 z w w

subject to a.w < 0 for jEI(x i).-

where

t

1(x1 ) = {j: a x. > b - c} (2.1)

If W= 0, stop. Else, go to Step 2.

Step 2

Let

I+(wi) = {j: atw. > of (2.2)

and let

b - a tx
=t for j{1I+(W) JJ (2.3)

a.W..32.

Let

di = Biw 1(2.4)

and go to Step 3.

Step 3

If

f(x+4-Ed.) + f(xi-Sdi) - 2f(xi) > E2 lid j,2  (2.5)

IeL

2 Vf(x) tdi

I f(xi+Edi) + f(xi-Edi) _ 2f(xi) (2.6)

1 m I 1I 1 I I1
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and let 6 = 5, and go to Step 4. Otherwise, let X, = 1, i = 2.i
i+l1 i+l 2 i'

and go to Step 4.

Step 4

Let

at. min 1 , Xi (2.7)

and compute the smallest nonnegative integer k satisfying

f(xi+(1 kid - I Li il) 7f(x) td. (2.8)

k.
Letk =k, =x + i( d, i = i + 1, and go to Step 1.i kxi+= i

The following remarks are helpful in interpreting the above algorithm.

1. A direction w. is determined by solving Problem D(xi). This problem

finds the point in the convex polyhedral cone {w: a w < 0 for jel(x.)}
J -1

1
which is closest to the vector - Vf(xi). Methods of least distance pro-

z

gramming, as in the works of Bazaraa and Goode [2], and Wolfe [16] can be

used for solving this problem. Special methods that take advantage of the

structure of the cone constraints may prove qaite useful in this regard.

2. The restrictions enforced in Problem Dj(x are the c-binding constraints

at xi, that is, those satisfying b. - c < a x. < b.. If w. = 0, then the

algcr~rhv is terminated with x.. In this case, from the Kuhn-Tucker condi-

tion? for Problem. -- re , t . ,, I-- ir"'x.) such that:
--------- ---- -
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Vf(x i ) + u a, = 0

u > 0 for jEICxi)

These conditions imply that x. is a Kuhn-Tucker point for the following1

problem:

minimize f( )

t t
subject to ajx < ajx. for jEI(x i )

t

a x < b. for j+I(x i)

Noting that b. - c < a.x. < b. for jl(x, if c is sufficiently small, it
3 J - 2.

is clear that the algorithm is terminated if x. is a Kuhn-Tucker solution to1

a slightly perturbed version of Problem P. The following definition will

thus be useful.

Definition 2.1
,

Let x be a feasible point to Problem P. If the optimal solution to Problem
D* *

D~x*) is equal to zero, then x is called a c-KT solution to Problem P.

3. If xi + w. is feasible to Problem P, then the search vector d. is taken1 1

as wI . Otherwise, di is taken to be the vector of maximum length along w.

which maintains feasibility of x. + d..1 2.
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4. Steps 3 and 4 of the algorithm compute the step size taken along the

vector d. in order to form x i+ . As proposed by Mukai [i0, 113, first an1

estimate of the step size A i is calculated. When appropriate, Ai is computed

by utilizing a quadratic approximation of the function f at xi, otherwise X.

is taken equal to 1. In order to ensure feasibility to Problem P, the first

trial step size a. used in conjunction with Armijo line search (1], is the1

minimum of X. and 1. As will be shown in Section 4, under suitable assump-
3.

tions, for large i, test (2.5) passes, k. = 0, and a. = A < 1. This confirms

efficiency of the line search scheme where eventually only one trial is

needed to compute the step size.

3. Accumulation Points of the Algorithm

Theorem 3.1 shows that each accumulation point of the proposed algorithm is

a c-KT point. In order to prove this theorem, lemmas 3.1 and 3.2 are needed.

These two lemmas extend similar results of Mukai [101 for unconstrained problems

In order to facilitate the development in this section, the following

notation is used. Let w(x) be the optimal solution to Problem D(x) and let

6(x) be as given in (2.3) with x. replaced with x. Finally, let d(x) = 6(x)w(x)
1

Lemma 3.1

Suppose that x is not a c-KT point for Problem P. Then, there exist scalars

V and s > 0 so that p < a(x) < 1 for each x with Ix-x*1i < s.

Proof

There exists sI > 0 so that I(x) = (x ) for all fx-x*JJ < s . Thus, the

feasible region for Problem Dix) is equal to that of Problem D(x*) for all x

satisfying 1lx-x*I < s . By continuous differentiability of f, it then follows

that w(.) is continuous in x at x , see for example Daniel [3]. Particularly,
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there exists a number s2 > 0 such that I+(w(x)) I±Cw(x*)) if jjx-x * < S2 .

This together with the continuity-of wC') and the formula for computing B(')

imply that 5C') is continuous in x at x Hence, d(-) is also continuous.

Since x is not a c-KT point, then w # 0. Furthermore, - a.x > c if
3 -

a w > 0 which implies that (x*) > 0. Therefore d(x 0. By continuity

of a(.) and dC-) at x there exist scalars q and s > 0 so that

8 x)II d Wl2 > - x*)fld(x*)H2  if I x-x*lI < s (3.1)

f(x+-dCx)) + f(x-ed(x)) - 2f(x) < q if [Ex-x*I1 < s (3.2)

Now, let x be such that 1fx-X f[ < s. Since w(x) solves Problem D(x), then

Vf(x)twlx) < -. z lIw(X)1 2 This, in turn, implies that - Vf(x)td(x) > 1
- 2 2

a(x) Ild(x)I12 and from (3.1) we get:

Vf(x)td(x) > - z B(x*) I1 d(x*)112 = y > 0 (3.3)

If test (2.5) passes, then from (3.2) and (3.3) the following lower bound on

X is at hand:

- 2 Vf(x) td(x) 2 Y
I f(x+Ed(x)) + f(x-Ed(x) - 2f(x) q- q

2
If test (2.5) fails, then A. = 1 and hence \. > min {l, CX} - . Since

I 1- q-

a, = min {l, Xi}, the desired result follows.

Lemma 'A.2

If x is not a c-KT point for Problem P, then there exist a number s > 0 and

an integer m so that k(x) < m if 11 x-x'If < s, where k(x) is the Armijo integer
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given by (2.8) with x. and C. replaced with x and (x) respectively.1 1

Proof

As in the proof of Lemma 3.1 and by continuous differentiability of f, there

exist scalars s, h, and y > 0 so that for II x-x* I < s the following hold:

Vf(x)td(x) < -y (3.4)

fVf(x+gd(x))td(x) - Vf(x)td(x)I <21 y for each gc[O,h] (3.5)

Now let m be the smallest nonnegativ integer so that (I)m < h and let x be
*2

such that lix-x < s. Then there exists eE[0,1] such that:

1 M 1 m t
f(x+(-) adx)d(xB - F(x) - -(2) a(x)Vf(x) d(x)

1 li t 1 t
( a c(x)Vf(x+8(Ycma(x)d())td(x) - () ma)(x)Vfx) d(x)

= (1)m O(x) Vf(-+ ()m (x)d(x))td(x) - Vf(x) td(x)} + 2 Vf(x)td(x (3.6)

Since e(1)ma(x) < h, (3.4) and (3.5) imply that the right hand side of (3.6)

is < 0 which in turn shows that k(x) < m, and the proof is complete.

Theorem 3.1

Either the algorithm terminates with a c-KT point for Problem P or else gen-

erates an infinite sequence {xi} of which any accumulation point is a c-KT

point for Problem P.
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Proof

Clearly the algorithm stops at x. only if x. is a c-KT point. Now, suppose
1 2.

that the algorithm generates the infinite sequence Jx4}. Suppose that x is

an accumulation point so that xi K - x for some infinite set K of positive

integers. Since f(xi) is decreasing monotonically and since f(xi) -* f(x* )

then fx i) - f(; ). Suppose by contradiction to the desired conclusion that
i

x is not a c-KT point. From Lemmas 3.1 and 3.2, there exist positive numbers

Pi and y and an integer m. so that a> P, Vf(xi) tdi < - y, and k. < m for large

i in K. Therefore,

f(l f(ki Vf(xi)td. < - 1 imfi+ I )  - 3 2 i -- 3 2Y

for large i in K. This implies that f(x.) --+ -, contradicting the fact that

f(xi) -i- f(x *). This completes the proof.

4. Eventual Acceptance of the Step Size Estimate
,

In the previous section, we showed that an accumulation point x of the

sequence {xi} generated by the algorithm is a KT point to the perturbed pro-

blem P' given below:

P': minimize f x)
t t* *

subject to ajx < aj x for jcI(x )

atx < b for jAl(x*)
j - j

Here, we assume that the whole sequence {Xil converges to a point x which

satisfies suitable second order sufficiency conditions. Under this assump-

tion, we show that test (2.5) is eventually passed. Furthermore, we show
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that X. < 1 and that k. = 0 for i large enough.

The second order condition is given in Definition 4.1. It is well-known

that x satisfying this condition is a strong local minimum for problem P'

That is, there exists a number y > 0 so that f(x ) < f(x) if x is feasible

to problem P' and !1x-x1j < y, see for example McCormick [9] and Han and

Mangasarian [7].

Definition 4.1

Let x be such that Ax < b and let i(x*) = {j: a.x > b.-c. x is said
J J

to satisfy the second order sufficiency optimality conditions for problem P'

if there exist scalars u. > 0 for j _I(x ) and y > 0 so that:

7f(x*) + I * u a. 0
jFI(x )

f(x*) td < 0, atd < 0 for jcl(x*), fl d I 1 => dtH(x*)d > y (4.1)

Theorem 4.1 shows that test (2.5) will eventually be passed so that

X. is given by (2.6). The following two intermediate results are needed to1

prove this theorem.

Lemma 4.1

If Cd < 0 and 11d 1 limply that dtHd > y > 0 then there is a number e > 0

so that Cd < 01 and Id 1= 1 imply that dtHd > y/2.

Proof

Suppose by contradiction that for each integer k there is a vector dk such

that
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lldk 1 = I. Cdk< 1_ 1, and dkHdk < 7/ 2  (4.2)

Since the sequen-e {dkl is bounded, it has an accumulation point d. From

(4.2), llid = 1, Cd < 0, and dtad < y/2 which contradicts the assumption of

the lemma.

Lemma 4.2

If either {x } converges or {x: Ax < b, f(x) < f(x0)} is bounded, then

d l 0.

Proof

Since 0 < Bi < 1 and d. 
=  .wi, it suffices to prove that w. - 0. Suppose

there exist an infinite set of positive integers K and a number £ > 0 so

that

1wi E> : for iEK (4.3)

Clearly, under either of the assumptions of the lemma, there exist an infinite

* K'* *
K' C !' and a point x so that xi -+ x . By Theorem 3.1 x is a c-KT point

for Problem P. Thus, w 0 is the unique optimal solution to Problem D(x ).

But for large iEK', ICx ) = l(xi), and by continuity of the solutions to

D(-) we must have lIwill < E/2 for large i in K'. This contradicts (4.3) and

the proof is complete.

Throughout the remainder of this section, the following notation will

be used for any scalar 'y:
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1
H . = 2 f (l-y) H(xi+Yydi)dy (4.3)

S 0

We can integrate by parts to obtain

f Cx +yd. f(,C) Sf (x) td, + 1_2 dtV&Y (4.4)
.3. 1 2 t Ii

For further details, the reader may refer to Polak [13, p. 2931.

Theorem 4.1
r *

Let 'xil be a sequence generated by the algorithm. Suppose that x. - x and

x satisfies the second order optimality conditions for problem P'. Then

there exists an integer m so that test (2.5) passes for all i > m.

Proof

From (4.3) and (4.4) we get:

f (xi+d ) - fCxi) =£Vf(x.)t d + L 2 dtHd
2 i 2.i i 2 i i i

f(xi-Ed i) - f(xi) -Evf(x i ) t  d d.. d.t -d
S2 2. i i I

Adding we obtain:

1 2 t (H +-£)
f(i+Sdi) + fxi-d i) - 2f(xi) C d E )d (4.5)

* t * *
Now for jCI(x ), a.x > b. - c. Since x. - x then for i large enough,i j 1
t t

a x. > b. - c so that JEI(x) By step 1 of the algorithm avw. < 0 and so
t *
a di-1 < 0 for i large enough and jclCx ). Likewise, from step 1 of the
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d.,

algorithm Vf(x_ w < 0 and hence VfC t < 0. Since -4 x then for
1 d a Ilil -* t di

any number 6 > 0, VfC'x ) < 6 for i large enough. Thus, Lemma 4.1 and
dill -

the second order conditions imply that

dH x )d. > Ylld i 2l for large i (4.6)
i2 i

Now note that

H'- H(x*) 112 f 0-Y)H CX+Ygdi)-H(x dy Il
0

1

< 2 0f (1-y) IIH(xi+y~di)-H(x* jIdy (4.7)

Since x i  x, then by Lemm 4.2, d i - 0. Particularly, for i large enough,

!,H(-xi+Ydi)-H(-x*) 1 < Y- for all yE[0,1]. From (4.7), IIHz - i(x*) I Y

This together with (4.6) yields:

t * dt
d H d d.Hix )di + d (Hi-H(x ))d.

> Idi 11' - lIld 112 IHi-H(x *) 11

- 2

> 1 Ild 11 2 for large i (4.8)

Similarly,

diHid -Ed .> Id i 11
2  for large i (4.9)

From (4.5), (4.8), and (4.9) it imediately follows that
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f(xi+£d') + f(x.-£d) - 2f(xi) > C YJIdH 2 for large i (4.10)

From (4.10), if test (2.5) fails for a large i, we must have:

2 

£0i Id i 2 > f(lX +Ed.) + f ~ iEd ) - 2f(x.) C Y 'I d i !2

i i --

that is, i >  - If the conclusion of the lemma does not hold, then test
i 4

(2.5) fails infinitely often and then & 0. This contradi(cts 6. > 1 for

large i, and the proof is complete.

Theorem 4.2

Let {xi} be a sequence generated by the algorithm. Suppose that x. x and

that x satisfies the second order optimality conditions for Problem P'. Then

.here exists an integer m so that f(x.ia.d i) - f(xi) < - aiVf(xi)td.

i > m, th:.t is, k. = 0 for all i > m.

Proof

By Theorem (4.1), test (2.5) passes for large i so that X. is given by

t t -

- Vt(.x) di - Vf(xi) d i

Ai i= = 1 2( .+ E d  (4.11)

f(xi-edi + f(xi-d i ) 2f(x.) 1 i H H d

If < I so that a.i = Ai. then from (4.4) and (4.11) we get:

I t 2 t X +2 t
f~x +aidi ) fxi) - - Cf(L 7 )f ( di X diHi di + -iVf(xi) d

i 1 t xi i 1, 2 1 ii i 3i ) i

1 2 X 1d 1 t(H+( 1 X2t E -C
2d (4.12)2 1 1id~ 1 i - 2 d1 i i 2i
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Since x. - x , then by Lemma 4.2, d. -0 0. Thus H. , Fi, and H converge to

H(x ) and the first term in (4.12) will be less than ' X2 Id .fl for i large
24 -' 1

enough. As in the proof of Theorem 4.1, dt(Hi+H )d > !Id I for large i.
1 i i j-2 i

Substituting in (4.12), the desired result holds.

Now suppose that A > 1 so that a. = 1. Then

1 t 1 2 t
f i(x+cid) - f(xi) cc ciVf(xi) di = dtHd. + - Vf(x) d (4.13)

Since Xi > 1, then from (4.11) we must have

tt E -E
Vf(xi) d < - - di(H +Hi )d.

1 1 21i i 1

Substituting in (4.13) we get:

1 1 i i 2 t i 1 t -E

f(xi+czidi) - f(xi) - iVf(xi)tdi 3<i [diHid i. di(Hi+Hi )di ]

1 t E: -E:
_ 1 d i (H +H )d. (4.14)

That the right hand side of (4.14) is < 0 for large i follows exactly in the

same manner in which we proved that (4.12) is < 0. This completes the proof.

Finally, we state certain conditions in Theorem 4.3 below which guarantee

that A. < 1 so that a. = I for i large enough.

Theorem 4.3

Let 1-:,} be a sequence generated by the algorithm. Suppose that x. "+ x and

that x satisfies the second order optinality conditions for Problem P'. If

z < I , then there is an integer m so that X. < 1 for all i > m, that is,4

9= . for all i > m.
1



Proof

By Theorem 4.1 there is an integer m so that tor i > m we have:

- 27 f(xi)tdi - Vf(i)td(

i = f(x i +Edi) + f(7i-Edi 2f (x i ) = dt(HE+H. )d.

As in the proof of Theorem 4.1

1 t -)d > for i large enough (4.16)-2 di" i ) i - 41i 2

Since w. solves Problem D(xi), then there exist scalars uij > 0 for Jel(x )

such that

Vf X.) + zw. + u..a.=0 (4.17)I i -£i )  x 3 3

tFrom (4.17) and (4.18) it follows that Vf(xi w - But by Theorem 3.

x is a c-KT point and hence the optimal solution w to Problem D(x ) is

w = 0. Since x. x , by continuity of the optimal solution to Problem D(-),
1

t .+

and since b - a.x. > c for each jel (wi), it follows from (2.3) that 1. = 1
Sj Ji1

for large i. Thus d. w. so that
1 1

Vf ).itdi = - z jjdifl 2  for large i (4.19)

Substituting C4.19) and (4.16) in (4.15), it is clear that X i < 1 for i large

enough, and the proof is complete.
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jective function and some of the constraints are assumed to depend

on a parameter, while others are held fixed. Under suitable con-
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I. Introduction.

For families of nonlinear programming problems of the type

(Q ) min f(x,p) in x subject to g(x,p) < 0, h(x,p) = 0, and

xEC

we derive optimality conditions which are generically necessary

in the sense that they hold at all local minimizers for (Q p), un-

less p belongs to a certain first category set of measure zero.

Here, P is an open subset of Euclidean space (or more generally a

n I Jmanifold), f, g, and h map R x P into R, R , and R , respectively,

I and J being finite sets, and the inequality g(x,p) < 0 [resp.,

the equality h(x,p) = 01 is interpreted coordinatewise.

In Spingarn and Rockafellar [7], such conditions for one spe-

cific class (Q ) were derived: right-hand-side perturbations of the

constraints and linear perturbations of the objective function. For

that class it was demonstrated that, except possibly for problems

(Q p) for p in a set of measure zero, the "strong second-order

conditions" (the Kuhn-Tucker conditions with strict comple-

mentary slackness, linear independence of the active constraint

gradients, and positive definiteness of the Hessian of the

Lagrangian on the subspace perpendicular to the gradients of the

active constraints) hold at every local minimizer for (Q p).

When studying questions of genericity, the class of problems

to which the results apply is crucial. The classes of problems
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considered in this paper are more general than in [7] in two ways.

First, the manner in which f, g, and h depend on p is given more

freedom. Rather than requiring perturbations of a special (e.g.

right-hand-side) type, we will only require that the family of

problems satisfy a general and easily verifiable criterion. Sec-

ond, in addition to the constraints g < 0 and h = 0, which we re-

fer to as the "variable" constraints, we also investigate the ef-

fect of the "structural" of "fixed" constraint x E C that does not

vary with p. The distinction between these two types of con-

straints is important here because the two types play different

roles both in the analysis of the conditions and in the statement

of the conditions themselves: the conditions that turn out to be

generically necessary for optimality depend on the particular

class of problems under consideration.

The regularity conditions that we impose on the set C have

been incorporated ihto our definition of "cyrtohedron". Cyrto-

hedra, which were introduced in [5], are piecewise smooth sets

that can be represented locally by a finite number of nonlinear

inequality and equality constraints. They are similar to, but

more general than the "manifolds - with - corners" studied by

Schecter [4].

The idea to study mathematical programming problems from the

generic point of view goes back to the Saigal and Simon study [3)

of the complementarity problem. Several others have studied ques-

tions which arise in economics concerning the generic properties

of equilibrium models and Pareto optima. The dominant notion of
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a "generic" property in all of these studies has been the category

theoretic one, relative to spaces of differentiable mappings under

the Whitney topology, rather than the "measure zero" notion used

here, and which we feel is better suited for studying nonlinear

programming problems.
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II. Preliminaries and notation.

A set M cRn is a k-dimensional Cs submanifold (s > 1) if for
Rk Cs

each x E M there is an open set U c R and a C diffeomorphism ¢

mapping U onto a neighborhood of x in M [2]. For any x= (q)c M,

Mx  range d(q) is the tangent space to M at x. If f : R R,

n
then "fIM" denotes the restriction of f to M. For any x e R

"Vf(x)" denotes the ordinary gra~ient of f at x, while "V(fIM) (x)"

denotes the gradient of fIM at x, the latter being a linear func-

tion on M If V(flM)(x) = 0 (i.e., if Vf*(x) is perpendicular to

M x), then x is a critical point for f on M, and in this case the

Hessian for fIM at x = 4(q) is the bilinear function on Mx defined

by

(V2 (fIM) (x)) (u,'v) = (V2 (foi ) (q)) (u,v)

2
where u = d4(x)u, v = dD(x)v, and V (fof) (q) is the ordinary

Hessian of foD. If V 2(fof) (q) is nonsingular, then x is a nonde-

generate critical point [i].
Rn

A subset S c R is of measure zero provided for every c > 0,

S can be covered by a countable family of n-rectangles, the sum of

whose measures is less than e [i. Sc Rn is of first category

provided S is a countable union of sets whose closures have empty

interior. We will call S a negligible set if S is both of measure

zero and first category.
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If F, N, S are submanifolds, Sc N, f : F - N, then f : F - N

is transverse to S if Ny Sy + df(x)(F x ) whenever y = f(x) ES.

For a proof of the following, consult Hirsch [11:

(2.1) THEOREM (Painametric Transversality) Let F, S, N be C s sub-

manifolds, P open, with S c N, Fx P - N of class C s ,

s > max{0, dim F + dim S - dim N}, and let $ be transverse to S.

Then there is a subset P' cp such that P\P' is negligible and for

all pEP', p(.,p) : F - N is transverse to S.

2 n 2

(2.2) COROLLARY. Let f : FXP - R be C , P open,Fc R a C sub-

manifold, and assume for each x E F that the Jacobian of the func-

tion p - V f (x,.) is of rank n at all p E P. Then except for p inx

a negligible set, all critical points of f(.,p) on F are nonde-

generate.

Proof: Let TF = {(x,C)E R : x-c F, F , 4(x,p)

(x,V xf(x,p)). For each pc P, $(.,p) is transverse to F x {} if,

and only if, all the critical points of f(.,p) on F are nondegen-

erate. But the hypothesis implies that 4(x,.) is transverse to

F x j0} for each x E F, and hence that ¢(.,.) is transverse to

F x {01. We then apply the theorem with s = 1, N = TF, and S =

F x {0}.

1
(2.3) COROLLARY. Let F, S, N be C submanifolds, P open, S cN,

: F xP - N of class C , dim F + dim S - dim N < 0, and let 0 be

transverse to S. Then there is a subset P' cP such that P\P' is

negligible and p(x,p) i S for all pEP', xE F.
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Proof: It follows from the fact that if (.,p) is transverse

to S, then the dimension requirements force 4x,p) I S for all

xcF. 0

For any S c Rn, "rank S" denotes the dimension of the linear

subspace "span S" spanned by S. "relint S" is the interior of S

relative to the affine flat spanned by S.

Let Uc be an open set, G , u EA and c E B, finite col-

lections of differentiable functions on U. For any A 0 cA and

x E U, define

r(x,A0 ) {VG (x) a E AOI u {VH(x) : B}

Z(A 0 ) = (y EU : 0 G a (y) H(y) Va A 0 'o B}

A nonempty connected set C c n is a cyrtohedron of class Cs (s > 1)

ms
if for every x E C, there are finitely many Cs functions G a I E A,

Rn

and H,, E B, defined on a neighborhood U c of x such that

x c Z (A) and

(2.4) (a) For all XEU, XEC if, and only if,

G (xW < 0 V aEA and Hs(x) = 0 VCB.
If~x < VG() by.x

(A) a a VGc(Bx) + Bb ( = 0 for some aE R + and

B
bc R , then a = 0 and b = 0.

(c) For each A 0 cA there is an integer s(A 0 ) such that

rank r(x,A0) = s(A0 ) for all x EU.



iIL±

If C is a cyrtohedron, then U may always be chosen [51 so that

(b') For all x EU, (b) holds with x in place of x

(c') If A0 cA CA and s(A0) = s(A1 ) then Z(A0 ) = Z(A1 )

(d) For all A0 cA, Z(A0 ) is connected (n-s(A ) -

dimensional submanifold

and when this is done, we will say that (G (c E A) ,H E B) ,U) ,or

more briefly (G ,H,,U), is a local representation (abbr. l.r.) for

C.

Let (G,,H,,U) be a l.r., x E C n U. Letting A+(x)=

{a EA : G (x) 0}, we define

Tc (x) = Rn : VG (x) < 0 V a EA , (x) V x) = 0 V , B)

LC(x) = {C E R : VG (x) = 0 Va E A+(x), C.7Hx) = 0 YE B1.

The dimension of C is defined to be dim C '= n - JBI. It does not

depend on x or on the particular local representation.

For x,y c C, define an equivalence relation - by specifying

x-y if, and only if, there is a sequence x = x0 , xI ,..-,x = y

in C such that for each pair (xi,x ) (i= 0,.--,p-l), there is a

l.r. (G ,H,,U) such that Z(A) {xi,xi+1 }. The equivalence classes

under this relation are the faces of C. The proof of the following

may be found in [5]:
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(2.5) THEOREM. Let CcR n be a cyrtohedron of class Cs (s > 1),

x E C. Then x lies on a unique face F of C, and F is a connected

S n
C submanifold of R . The tangent space Fx to F at x is L c(X).

There is a 1.r. (G. ,H, U) for C such that x E Z(A), and for any

such 1.r., Z(A) = F nU and dim F = dim L (X) = n - s(A).
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III. First-order conditions.

In this section, certain first-order conditions (3.2) are

shown to be generically necessary for optimality. This will be

done by showing that a constraint qualification, called the "in-

dependence criterion" is generically satisfied at all feasible

points. We will then appeal to a result from [5) stating that in

the presence of this qualification, these conditions are necessary

for optimality.

It is assumed here that f, g, and h are of class C on R

and C cRn is a d-dimensional cyrtohedron.

If x is feasible for (Q), the independence criterion (IC) is
I+ j

satisfied for (Q) at x if for any a E R and b E R

(IC) aiVgi(x) + Ij b Vh. (x)E Lc(X) implies 0 = a = b.
+

It is trivially satisfied if I+= J = . If C = Rn, IC says that

the gradients of the active constraints at x are linearly indepen-

dent. More generally, if F is the face of C that contains x, IC

says that the gradients of gijF, i E I+ and h. IF, j E J at x formJI
a linearly independent set. From [5], we have:

(3.1) THEOREM. If x is a local minimizer for (Q) and if the in-

dependence criterion is satisfied at x, then there exist y E and

- J
Z E R such that
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(3.2) (i) -V xL(x,y,z) EN c(x)

(ii) Yi > 0 implies gi(x) = 0 V i E I.

Showing that the first-order conditions 3.2 are necessary for op-

timality in "most" problems reduces, by this theorem, to showing

that IC holds for "most" problems.
R RI RJ

Let E : R- R x be given by E(x) = (g(x),h(x)). (Tf

I = J = , then R I XR = (0} and E(x) = 0), and for any I' c I,R RJ

define P (I') = {(x,0) ER x R x i  C iEI' }.

(3.3) LEMA. Let x be feasible for (Q). The independence cri-

terion for Q) is satisfiea at x if, and only if,

(3.4) RI xR J = dE(x)(Lc (x)) + Q(I+(x)).

Proof: dE(x) is the (III + Il) xn matrix whose rows are the gra-

dients of fi, i E I, and g,, j E J. Let c = (a) represent an arbi-

trary (III + IJl)-dimensional column vector. IC holds at x if,

(a\ I
and only if, there exists no c a) 0 with aE R + such that

c'dE(x)z = 0 for all z Lc (x), an assertion that is easily seen to

be equivalent to 3.4. 0

(3.5) LEMMA. Let F be a face of C. If EIF : F - RI xR is trans-

verse to 2(I') for every I' cI, then IC is satisfied at every x EF

which is feasible for (Q).
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Proof: Immediate from the definition of transversality and the

precueding lemma. 0

C1 Rn
Now suppose that f, g, and h are of class C on R xP, and

Rn  I RJ
let E : xP - R xR be given by E(x,p) = (g(x,p),h(x,p)). We

say the family (Q P) is full with respect to constraints if thu

Jacobian of the function p' '-* E(x,p') has rank III + IJI at

every (x,p) E C x P. The usual right-hand-side perturbations fit
thisreqireent;her P I × J

this requirement; here, P= R xR , and for any p (s,t) EP,
c1

g(x,p) = u(x) - s and h(x,p) = v(x) - t for some C functions u

and v.

(3.6) PROPOSITION. Let F be a face of C. Assume that C, g, and

h are of class C5 , with s > max(0,d-IJI) (d = dim C), and that (Qp

is full with respect to constraints. Then there is a subset PF C P

such that P\PF is negligible, and for all pE PF' IC holds at all

x E F which are feasible for (Q p). I

Proof: Since (Q p) is full with respect to constraints, the Jacobian

of the function p' s-) E(x,p') has rank III + IJi at all (x,p) cFxP.

In particular, E I (FxP) F x P - RI x R is trivially transverse to

IJany submanifold of R x R

For each VI, x(I') cR xR is a subspace of dimension

II - II'I < III. Since EI(FxP) is transverse to Q(I'), and since

dim F + dim Q(I') - dim(RxRJ ) < d + III - (III + IJI) = d - IJi ,
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and since F and E are of class Cs with s > max(0,d-IJI), it follows

by 2.1 that there is a subset PF cP with negligible complement

such that for all pE PF' the function Ej(Fx{p}) : F - R I xR J is

transverse to Q(I'). Clearly, it may be assumed that PF has this

property for all I' c I. By Lemma 3.5, for all p EPF' if x EF is

feasible for (Q ) , Lien IC is satisfied aL x. Ej

(3.7) LEMMA. A cyrtohedron has only countably many faces.

Proof: Let (G , H ,U) be a 1.r. for C. It is enough to show that

U meets only countably many faces of C. For each x E U n C, define

A +(x) = { EA : G (x) = 0}. Fix A' cA, and let T(A') = {xEUnC

A +(x) = A'}. Clearly it is enough to show that T(A') meets only

countably many faces of C. For each ye T(A') there is an open

ball Vy cU about y, such that (G. (acEA'),H (SEB) ,Vy) is a l.r. for

C and G < 0 in V for all c A\A'. By definition of "face", the0.y

set V nT(A') is contained in a single face of C. Thus eachy

y ET(A') has a neighborhood in T(A') lying in a single face of C,

showing T(A) meets only countably many faces of C. 0

(3.8) PROPOSITION. Let C, g, and h be of class Cs with

s > max(0,d-IJI) (d = dim C), and let (Q p) be full with respect

to constraints. Then there is a subset PC c P with negligible com-

plement such that if p E P,. and x is feasible for (Qp ), then x

satisfies IC for (Qp

,, i , i i i I I I I !p
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Proof: For each face F of C, let PF be as in Proposition 3.6.

By Lemma 3.7, PC = np PF has the desired property. 0

Combining this with Theorem 3.1, we obtain

(3.9) THEOREM. Let C, g, and h be of class C with s >max(0,d-IJI)

(d = dim C), and let (Q ) be full with respect to constraints.
p

Then there is a subset PC c P with negligible complement such that

if p E PC and x E C is a local minimizer for (Q-), then there existsC- p
- - I RJ
(y,z) E R+ xR such that

(3.10) (i) -V xL(X,y,z,p) 6 Nc(X)

(ii) V i E I, yi > 0 implies gi (xp) = 0

The assumption that (Q ) is full with respect to constraints

can be weakened somewhat:

(3.11) COROLLARY. If there is a closed subset P' c P of measure

zero such that the subfamily { (Q ) : p E P\P'} is full with respect

to cunbtiainLs, then the conclusion of 3.9 holds.

Proof: Apply Theorem 3.9 to the subfamily. U
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IV. Generic Second-Order Conditions

2Henceforth, f, g, h, and C are assumed to be of class C

Let Rr = Rn x RI x RJ , and define t: R r Rr by

CW %V !(w), -V yL(w), -V ZL(w)) (w= (x,y,z)).

If we let C = C x R+ x R J , then C c Rr is also a cyrtohedron of class

2
C.

The second-order conditions which we show here to be generi-

cally necessary for optimality are the generalized strong second-

order conditions discussed previously in Spingarn [5]. A point

w = (x,y,z) EC is said to satisfy these conditions for the problem

(Q) if

(SSOC) (i) x is feasible for (Q)

(ii) -V L(w) 4 relint NC(x)

(iii) Vi 'E, Yi > 0 if, and only if, gi (x) = 0

(iv) The independence criterion for (Q) holds

at x

(v) If F is the face of C containing x, then

2 n(V (L F)(w))(;,;) >0 for all ER satis-
x

fying 0 3 ;EL C (x), and z.Vgi(x) =

C.Vhj(x) = 0 for all i EI+, + E J.
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For a more detailed discussion of these conditions, and a discussion

of their relationship to the classical conditions, we refer to [5].

If a particular representation (G L HVU) for C near x is

chosen, these conditions could be rephrased in terms of the func-

tions G and H without ever mentioning the set C. We have

avoided doing this for several reasons. Most important, the roles

played by the two types of constraints, fixed and variable, are

not the same, and the above formulation emphasizes the different

ways they enter into the conditions. Also, this formulation sug-

gests the possibility of generalizing the conditions to a broader

class of sets C. Consider, for example, the set

x= (x I x 2 x 3) ER 3 -X 1 an 2 +x3 > lxi}.

Because no representation of the type 2.4 exists for C near x = 0,

C is not a cyrtohedron. But, like a cyrtohedron, C can be parti-

tioned into "faces" (four in this case) that are submanifolds,

and N Cx) and L CX) have obvious meanings, so the conditions SSOC,

as stated, are still meaningful. In fact, C has all the properties

that are required for our proof of the genericity of SSOC. We do

not know if there is a "natural" broader class to which our re-

sults apply. It seems that the conditions should be generic for

sets C that look (in some sense) locally like the intersection of

a cone with a neighborhood of the origin. One possible class

would be those sets C such that each x E C has a neighborhood U

such that for some diffeomorphism p, and some closed convex cone
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K, (x) = 0 and (CnU) = ¢(U)n K. For this class, the proof of

the genericity of the above conditions does indeed go through, but

since this class does not seem to include cyrtohedra, it is not as

broad as one would like.

We observed in [5] that for any w- = (x,y,z) E C with x feasi-

ble for (Q),

(4.1) w satisfies 3.2 <-: -- cw E N(w)
C

(4.2) if x is a local minimizer, SSOC holds <

(a) -- wE relint N_(w) and
C

(b) w is a nondegenerate critical point for L on G.

Our proof of the generic necessity of SSOC will proceed as follows.

If x is a local minimizer, then from the previous section we have

the (generic) existence of y and z satisfying the first-order con-

ditions 3.2. Let w = (x,y,z). From 4.1, it follows that

-tw EN~(w). By 4.3, -TwE NE(w) implies (generically) thatC C

-TwE relint N_(w), so it will follow that 4.2a holds. By 2.2 we
C

know (generically) that all critical points of L on all faces of

C are nondegenerate, so that 4.2b also, and hence SSOC holds.

(4.3) PROPOSITION. Let C cRn be a cyrtohedron of class C2, P
, n Rn 1

open, and -: R XP + R a C function. Suppose that for each

(x,p)c C xP, the map p' s -r(x,p') has Jacobian of rank n at (x,p).
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Then there is a subset P0 c P such that P\P0 is negligible and for

all p E P 0 and all x c C,

(4.4) (x,p) E N (x) = T(x,p) c relint N Cx).

Proof: Let F be a face of C. For every xc F, there is a l.r.

(G ,H,,U) for which xE Z(A) = F nU. For each such l.r., we will

show that there is a subset P c p with P\P negligible such that if

p EP and x EF nU, then 4.4 holds. F may be covered by sets U cor-

responding to countably many such l.r. Taking the intersection

of the corresponding sets P gives a set PF such that 4.4 is satis-

fied for all p P F and all xc F. By Lemma 3.7, the set P0 = nFPF

(taking the intersection over all faces F of C) will have the de-

sired property.

So fix a face F, xE F, and (G ,HU) such that x EZ(A) =F nU.

For any T E N (x)\relint N (x), it follows from the definition ofC C
N c(x) that there exists A0 cA such that T E span r(x,A0 ) span F(x,A).

Now, for any A 0 c A, s(A0 ) = rank F(x,A 0 ) for all x EU, so it suf-

fices to show for any A0 cA with s(A 0 ) < s(A), that except for

p EP belonging to a negligible subset, t(x,p) ispan F(x,A 0 ) for

all x E F n U. Henceforth, we fix A 0 c A such that s(A 0 ) < s(A) .

Let N = (FnU) x Rn and S = { (x,w) E N : w E span r(x,A 0}.
C21

Since C is of class C , S is a (dim F + s(A 0))-dimensional C 1 sub-

manifold, and N is a (dim F + n)-dimensional C2 submanifold. De-

fine (x,p) = (x, T(x,p)), and fix xE Fn U, PE P such that

n
p(x,p) ES. By hypothesis, range d p(x,p) = {0} xR . Also,pW
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N (x p) = F xRn and S(p) = F x K for some subspace K c Rnx x

Hence N (xp) = S (xp) + range d p(x,p), showing that p(x,*)

P - N is transverse to S, and hence that (FnU) x P - N is trans-

verse to S. By 2.5,

dim(FnU) + dim S - dim N = dim F + s(A0) - n < dim F + s(A) - n = 0.

So, by 2.3, there is a subset P(A0 ) cip with P \P(A0 ) negligible,

such that for all p E P(A0) and all xrEFnU, we have 4(x,p) S, or

equivalently, T(x,p) ispan P(x,A 0). U

The family (Q p) will be called full provided the function

p -> V wL(w,p') ERr has Jacobian of rank r at all (. p) E C x P.

This notion should not be confused with "full with respect to con-

straints", which is a weaker property:

(4.5) PROPOSITION. If (Q p) is full, then it is full with respect

to constraints.

Proof: (Q p) is full with respect to constraints if, and only if,

the Jacobian of p' F- Vyz L(w,p') has full rank III + IJi at

every (w,p) C xP. When it does not have full rank, then neither

does the Jacobian of p' - V wL(w,p') V xyL(w,p), so (Q ) is

not full. 0
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, n  I .n RJ,
For an example, suppose that u: R n - R, v • R -1 R ,and

n 2 n I J
R : R are C functions. Let P = R R x R , and for any

p = (q,s,t) EP, define g(x,p) = u(x) - s, h(x,p) = v(x) - t, and

f(x,p) = Z(x) - x-q. Then the Jacobian of p '-> VwL(wp) is minus

the identity matrix, and hence of rank r.

Previously, we saw that the first-order conditions 3.2 and

3.10 are necessary for optimality for most p E P if (Q p) is full

with respect to constraints and sufficient differentiability is

assumed. When (Q p) is full then, for most p, the stronger condi-

tions SSOC are also satisfied provided that the first-order condi-

tions are:

Rn  2 pn

(4.6) THEOREM. Let C cR be a cyrtohedron of class C P open,

and let f, g, and h be C2 functions on Rn xp. If (Q p) is full,

then there is a subset P0c P such that P\P0 is negligible and for

all p E P0 : if x E C is a local minimizer for (Q-), and if y E +
p -P .1

and z ER satisfy 3.10, then SSOC holds.

Proof: Since (Q p) is full, the hypotheses for Proposition 4.3 are
Rr Rn

satisfied with Cc in place of C cR and -T in place of T. So,

there is a subset P' c P with negligible complement such that for

any p EP' and wEC, -T(w,p) E N(w) implies -r(w,p) Erelint N~(w).

CC

Since (Q ) is full, the Jacobian of p' v--> V wL(w,p') ERr is of

rank r at every (w,p) ECx P. By 2.2, for every face G of C, there

is a set P(G) with negligible complement in P such that L(',p) has

only nondegenerate critical points on a for all pEP(G). Let
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P" = nP(G), taking the intersection over all (countably many by

Lemma 3.7) faces of C, and define P0 
= P ' nP".

Fix p E P0 . x a local minimizer for (Q_) , and let W:- (x,y,z)

P

satisfy 3.10. Then -T(w,p) cN~(w) by 4.1, which implies that w
C

is a critical point for L(.,p) on the face G of C containing w by

[5, Lemma 3.1c), and that -T(w,p) E relint N_(w) since pE P'. Since

C

pEP", w is a nondegenerate critical point. Thus both parts of

4.2 are satisfied and SSOC holds. 0

(4.7) THEOREM. Let C C Rn be ad-dimensional cyrtohedron of class
, C2 Cs Rn

C s , P open, f of class C and g and h of class C on R x P with

s > max{l,d-IJ}. If (Q ) is full, there is a subset P0 cP with

P\P0 negligible such that for all P E P0 if x c C is a local mini-
-- I x J

mizer for (Q_) there exists (y,z) E R+ x R satisfying SSOC.
p

Proof: Combine Theorems 3.9 and 4.6 and Proposition 4.5. U

In the manner of Corollary 3.11, it follows that the conclusion

of Theorems 4.7 is still valid if there is a closed measure zero

subset P' cP such that the subfamily {(Q) : pc P\P'} is full.

Acknowledgement. I wish to thank Professor R. T. Rockafellar for

his many helpful suggestions.
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I. Introduction.

In nonlinear programming theory there is a large gap between

the weak first-order conditions that are necessary for optimality

and the much stronger second-order conditions that have been found

useful in the design and analysis of algorithms. It is common

practice to assume (without giving any real mathematical justifi-

cation) that very strong optimality conditions are satisfied at a

minimizer, and to base convergence proofs, and thus to justify

algorithms, on the basis of such assumptions. Of course, for any

given problem, those a priori assumptions cannot be checked, unless

the solution is already known.

In this paper, we discuss a "generic" approach to optimality

conditions that has been developed in Spingarn and Rockafellar [10]

and Spingarn [7,8,91. Rather than talking about conditions that are

necessary for optimality in specific problems, we discuss instead

conditions necessary for optimality for most problems in a family

of problems. More precisely, for a family(Q(p))of nonlinear pro-

gramming problems indexed by a parameter p Pc Rn we study conditions

which, unless p belongs to a negligible set, hold at all local

minimizers for (Q(p)) where by negligible we mean a first category

set of measure zero in P.

This approach gives a rigorous mathematical underpinning to

the a priori assumption of conditions which are not truly necessary
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for optimality, by describing the exact sense and the circumstances

in which these conditions can be expected to hold. Another attrac-

tive feature of the theory is that "constraint qualifications",

which are normally required to prove the necessity uf Kuhn-Tucker

type first-order conditions, need not be assumed to obtain condition

which are merely generically necessary.

In this paper, no proofs are presented. Instead, we refer

the reader to the references [7,8,10].

II. A simple class of perturbations.

Consider the basic problem

(Q) min f(x) over all xE such that

g(x) s: 0 and h(x) = 0 ,

where the functions f : R- R, g : R, and h : R- R

are continuously differentiable.

The standard first-order conditions for local optimality of

x in (Q) are that x should be feasible and there should exist
n Rk

vectors yE R+ and z E R such that

(KT) Vf (x) + y'Vg(x) + z'Vh(x) = 0

and for all i I+(x), Yi = 0

where
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I +(x) = {i l iim, gi(x) = 0.

These conditions are not actually necessary for optimality. They

are only necessary under an aC'c.itional assumption called a "constrai

qualification", the simplest such being

(CQ) {Vgi (x) : i E I+ (x) } u {Vh3(x) : j=l,..- ,k}

is linearly independent.

When the functions f, g, and h are twice differentiable, a vector

x is said to satisfy the strong second-order conditions for local

optimality in (Q) if (CQ) holds, and there exists y E and z 

such that (KT) holds with

Yi > 0 for all i e I +(x) , and

Rn
every nonzero wE R for which w-Vgi(x) = 0

for all i EI +(x) and w-Vh. (x) = 0 for all j also

satisfies w-H(x,.,z)w > 0,

where H(x,y,z) is the Hessian of the Lagrangian function in (Q):

m k

2 m 2 + V2
H(x,y,z) = V f(x) + y i V gi(x) + h z Vh (x)

i=l j=l 3 3

These conditions are known to guarantee that x is an isolated

locally optimal solution to (Q). They also have other important

consequences, for example with respect to the sensitivity of x
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to changes in a parameter; cf. Hestenes [ 3 ], Fiacco [1]

The strong conditions are useful for proving convergence results;

for example, cf. Robinson ( 5], Rockafellar [6 ], Powell [41,

Fiacco and McCormick [2].

Let us embed (Q) in the following family of nonlinear program-

ming problems

(Q(v,u,t)) min f(x) - x-v over all xE Rn

such that g(x) u, h(x) = t.

The original problem (Q) then coincides with Q(0,0,0). Any partic-

ular problem in this family may be "bad" in the sense that the

strong conditions may fail to hold at some local minimizer for

that problem. However, the set of bad problems is small, as the

following shows [101:

THEOREM 1. Suppose f is of class C
2 and g and h are of class C

n - k

Then except for (v,u,t) belonging to a set of measure zero in

Rn x Rm x Rk , (Q(v,u,t)) is such that every local optimal solution

x satisfies the strong second-order conditions.

III. General perturbations.

Next, we examine what happens when more general families of

problems are allowed. The families we wish to consider are of

the form
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(Q(p)) min f(x,p) over all x satisfying

g(x,p) 5 0, h(x,p) = 0

with p ranging over some open subset P of Euclidean space.

The family Q(v,u,t) just considered clearly is a special case.

Obviously, some additional assumption is required in order

to guarantee that the strong conditions fail only in a negligible

subfamily. After all, we could start with a "bad" problem (Q)

for which the strong conditions fail at some local minimum, and

then, by introducing trivial perturbations so that (Q(p)) =

(Q) for all p, we would obtain a family for which the conditions

fail for every problem. The problem here is that the indicated

family would not be "rich" enough; it would not contain enough

perturbations.

The following definitions specify two different ways a family

can be "rich". If g and h are of class C , let us say that the

family (Q(p)) is full with respect to constraints if the Jacobian
Rm+k

t-f the function p' - (g(x,p),h(x,p)) E R has full rank m+k at
Rn Rr

every (x,p) E R x P. For any w = (x,y,z) E R (r=n+m+k) and p E P, let

L(w,p) = f(x,p) + y'g(x,p) + z'h(x,p)

2be the Lagrangian for (Q(p)). If f, g, and h are of class C

the family (Q(p)) will be called full provided the function
' r Rr

p I+ V L(wp') E R has full rank r at all (w,p)E R x P. Every

full family is automatically full with respect to constraints.
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These two properties are sufficient to guarantee the generic

necessity of the first--order (KT) and strong second-order condi-

tions, respectively:

THEOREM 2. (a) Let g and h be of class Cs on Rn X P with

s > max(O,n-k) and let (Q(p)) be full with respect to constraints.

Then there is a subset P' c P with negligible complement such that

if pE P' and x is a local minimizer for (Q(p)), then there exists

-- ~ m x k
(YZ)R R satisfying (KT)

(b) Let f be of class C2 and g and h of class Cs on Rn x P

with s > max(l,n-k). If (Q(p)) is full, then there is a subset

P' c p with negligible complement such that for all p E P' if x

- m k
is a local minimizer for (Q(p)) there exists (yz) E x R satisfying

the strong second-order conditions.

To see how Theorem 2 can be applied, consider again the family

(Q(v,u,t)). We take p = (v,u,t), so for any w = (x,y,z),

L(w,p) = f(x) - x'v + y' (g(x) -u) + z' (h(x)- t).

We may then compute
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Vf (x) - v + Yyi Vg (x) + z Vh5 (x)

V L(w,p) = W u iW

h.(x) - t.J J

and hence 7 7 L(w,p) = -I, where I is the (n+m+k)-dimensionalpw

identity matrix, which is trivially of rank n+m+k.

The full rank criteria given in Theorem 2 are sufficient,

but not necessary for the generic necessity of the strong conditions.

However, the rank criteria can be weakened (and thus the theorem

strengthened) slightly. To illustrate, consider the family

4 2

(O(P)) minimize x 4+ p 2x over all xE R.

The Lagrangian for (Q(p))is L(x,p) = x4 + p 2x (since there are no

constraints) so V V L(x,p) = 2p. For Theorem 2 to apply, it would
px

have to be true that 2p 0 for all p. This is not a real obstacle

though; since the theorem could be applied to the subfamily

{Q(p) : p i 0}. The same reasoning shows in general that the

result of the theorem holds whenever the set of p values for which

the rank condition fails is contained in a closed measure zero

subset of P:
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COROLLARY 1. If there is a closed subset P' c P of measure zero

such that the subfamily { (Q(p)) : p E P\P'} is full [with respect

to constraints], then the conclusion of Theorem 2a [resp., of

Theorem 2b] holds.

Another minor extension is suggested by the family

2
(Q(p)) minimize px + (1- p)x over all xE R

where pE R. In this case, V V L(x,p) = 2x - 1. For Theorem 1p x

to apply, it would have to be the case that 2x - 1 0 for all

x c R. Nonetheless, it is possible to conclude in such an instance

that except for p in a negligible set, the strong conditions hold

for (Q(p)) at all local minimizers other than possibly x =

Rn

COROLLARY 2. If there is a closed set KE R such that the rank

condition of Theorem 2 holds except for x E K, then the conclusion

of that theorem holds, except possibly at minimizers which are in K.

IV. Families with selective perturbations.

We are confronted with additional questions when we consider

a family like the following one:

(S(vut)) min f(x) - x v over xE Rn

subject to g(x) :s u, h(x) = t, and x - 0.
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This family is identical to Q(v,u,t), with the important exception

that here there is an additional "fixed" constraint x 0 that is

independent of the parameters. Neither Theorem 1 nor 2 can be

applied in this situation.

Those theorems would apply, were we to alter the family by

replacing the fixed constraint with a perturbed constraint x s.

This would yield a family Q(v,u,t,s) for which the strong conditions

are necessary except for (v,u,t,s) in a set of measure zero.

However, the family of interest, namely (S(v,u,t)) = (Q(v,u,t,0)),

would be a measure zero subfamily of (Q(v,u,t,s)). Thus, although

the set of "bad" problems in (Q(v,u,t,s)) is negligible, it does

not follow that the bad problems in S(v,u,t) are negligible with

respect to S(v,u,t).

Rather than concentrate on this particular family, we study

the generic behavior of more general families of the form

(S(p)) min f(x,p) over all x E Rn

subject to g(x,p) 0, h(x,p) = 0, and xE C,

where C is a fixed set. For the family S(v,u,t), we would take

C = R+, while the situation in Theorems 1 and 2 requires C = Rn

Concerning the family (S(p)), we will address ourselves here to

three questions: (1) What reasonable assumptions can we impose

on the set C which allow us to develop a theory of generic second-

order conditions for (S(p))? Intuition suggests that C must be

"piecewise C 2-smooth" in some sense. (2) What are the appropriate
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generic second-order condition s? It turns out that these conditions

actually depend on the set C, and are not always (but sometimes are)

exactly the same as the conditions that would be obtained by

replacing the constraint x C with inequality or equality constraint

and then writing down the usual strong conditions for the problem

so obtained. (3) What "rank condition" ensures that these condi-

tions are generic for (S(p))?

We begin by stating our assumptions on the set C. These have

been incorporated into the definition of "cyrtohedron". The name

is taken from the Greek "KUpTOO" (= curved, bent) + "c:px" (= side),

and is motivated by the fact that these sets look like polyhedra,

except that the "faces" instead of being polyhedral, are submani-

folds.

Let U c Rn be an open set, G a E iA and H, E B, finite col-

lections of differentiable functions on U. For any A0 c A and

x f U, define

F (x,A0) {VG (X) a E A 0 } u {VH (x) : B}

Z(A0 ) = {y E U : 0 = G (y) = H (y) 'd U E A0 , V8 E}

A nonempty connected set C c Rn is a cyrtohedron of class C s (S > 1)

if for every x E C, there are finitely many Cs functions G ci a A,

n
and H, E B, defined on a neighborhood U c R of x such that

X E Z(A) and
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(a) For all x U, x r C if, and only if,

G (x) ! 0 Va E A and H (x) = 0 d2 c B.

(b) If a VG (x) + b7 VH(x) = 0 for some aE RA and
Aa a cc1 +

Bbe R , then a = 0 and b = 0.

(c) For each A 0 cA there is an integer s(A0) such that

rank ?(x,A0 ) s(A 0 ) for all xe U.

Examples of cyrtohedra. (a) A differentiable submanifold in R

is a cyrtohedron for which the set A may always be taken to be

empty.

(b) Cyrtohedra for which the set A may always be taken either

empty or of cardinality one are submanifolds with boundary.

(c) A polyhedral convex set is the intersection of a finite

nRnumber of closed half-spaces in Rri

(d) Sets that can be expressed as C = xE Rn : gi(x) < 0,

i l,",m, and h.(x) = 0, j = l,'--,p}, where the functions gi

and hj are of class Ck and have the property that for everyJ

x e C, {Vgi (x) : i e I+ (x) } u {Vh. (x) - j = 1,*"'',p} is linearly

independent, where I +(x) = {i gi(x) 0}.

For an example of a simple set that is not a cyrtohedron,

consider the set Cc R3 which consists of all x = (x 1 ,x 2 ,X 3 ) such

that 1xil 1, x1 + x3 -_ 1, and -x1 + x3 !5 1. For this set, there

exist no functions G , H which satisfy the above requirements in a

neighborhood of the point (0,0,1).

If C is a cyrtohedron, then U may always be chosen so that
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(b') For all x c U, (b) holds with x in place of x

(c') If A0 c A 1 c A and s (A 0 ) = s (A1 ) then Z(A 0 ) = Z (A,)

(d) For all A0 c A, E A0 ) is connected (n-s-(A 0

dimensional sub.mani fold

and when this is done, we will say that (G (]iA) ,I- (S B) ,U) , or
1

more briefly (G H,U), is a local representation (abbr. l.r.)

for C.

Let (G ,H ,U) be a l.r. , x c C n U. Letting A+(x) =

{a A : G (x) = 0}, we define

L : (x) = :Rn : c = 0 Va A+ (x), 6" 7 H (x) = 0 V E B).

A (x) B
NC (x) = a cVG (x) + b W :(x) a E R +  and b E R I

E' A (x) a ScB +
+

N (x) is the normal cone to C at x, and Lc (x) is the linear approxi-CC

mation to C at x; the latter is the tangent space at x to the "face"

(definition below) of C containing x. The dimension of C is defined

to be dim C = n - JBI. It does not depend on x, and none of these

definiticns depend on the particular local representation chosen.

For x,y c C, define an equivalence relation - by specifying

x-y if, and only if, there is a sequence x = x0, x1 ,..,x = y

in C such that for each pair (xi,x i+) (i=0,-.',p-l), there is a

l.r. (G ,H_,LU) such that Z(A) -{x, xi. The equivalence classes
n' i+o

undler this relation are the faces of C.
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A few examples help to clarify the latter defnition:

(a) The faces of a polyhedral convex set are the relative interiors

of its "faces" in the usual sense (that is, subsets which are

the intersection with some supporting hyperplane).

(b) A submanifold C c Rn has only one face.

(c) If C is the hemisphere C = x = (xI  •x) 1 R : nx[ < I and

x 1 01, then C has four faces, corresponding to the choices of

equality or strict inequality in the definition of C:

F {X : lxl < 1 and x n > 0}

F 2  {x : xl = 1 and xn >01

F 3 = {x : xl- l and x =0)

F4 = (x : Ixi= 1 and xn  01

To state the optimality conditions, we need some more defi-

nitions. Consider a specific problem

Rn

(S) min f(x) over all XE R such that

g(x) - 0, h(x) = 0, and x E C.

If x is feasible for (S), the independence criterion (IC) is

satisfied for (S) at x if for any aE R and bE R with a = 0

fcr all ii I+
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rn k
(IC) a g. (x) + Y b.Vh. (x) L (x) implies 0 = a = b.

i~l i1g1 j=1 I J C

It is trivially satisfied if m k 0. If C Rn, IC says that

the gradients of the active constraints at x are linearly indepen-

dent. More generally, IC says that the projections of the gradients

of gi, i E I+ and h. at x onto Lc (x) form a linearly indepen-

dent set.

A set Mc Rn is a k-dimensional C submanifold (s - 1) if for

each x c M there is an open set U c Rk and a Cs diffeomorphism ¢

mapping U onto a neighborhood of x in M. For any x = (q)E M,

range de(q) is the tangent space to M at x. If f : R R,
x

then f>M denotes the restriction of f to .1. For any xE R,

"Vf(x)" denotes the ordinary gradient of f at x, while "V(f i4) (x)"

denotes the gradient of fIM at x, the latter being a linear func-

tion on M . If V(flM)(x) = 0 (i.e., if Vf(x) is perpendicular tox

M ) , then x is a critical point for f on .4, and in this case thex

Hessian for f!M at x = ¢(q) is the bilinear function on M definedx
by

( 2 (fIM) (x) u, (V2 (fo ) (q) ) (u,v)

22
where u = d¢(xu, v = d¢(xWv, and V2(fo4¢)(q) is the ordinary

Hessian of foe. If V 2(fo-)(q) is nonsingular, then x is a nonde-

generate critical point for f on M.
Supos heceorh tat ;  2 Rn

Suppose henceforth that f, g, and h are of class C on R

and that Cc Rn is a cyrtohedron of class C2 We extend the definitio
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of the strong second order conditions to the Lroblem (S) by

M, R kdeclaring a point w = (x,yz) with x E C, y R +, and z c R to

satisfy the conditions whenever

(SSOC) (i) x is feasible for (S)

(ii) -V xL(w) E relint N c(X)

(iii) igI, Yi > 0 if, and only if, gi(x) = 0

(iv) The independence criterion for (S) holds at x

(v) If F is the face of C containing x, then

2 n(V (LJF) (w)) (, )> 0 for all CE R satis-x

fying 0 E %L C (x), and C.7gi(x) :

c.Vh. (x) = 0 for all i E I+, and all j.

As before, we say the family (S(p)) is full provided the map

p' * V L(w,p') ERr has full rank r at all (w,p) ERr xP. We noww

have covered all the preliminaries needed to state the final result.

ThEOREM 3. Let Cc Rn be a d-dimensional cyrtohedron of class
, C2  - R n

C P o2en, f of class and g and h of class C5 on x p with

s max{l,d-k'. If (S(p)) is full, there is a subset P0 c P with

P\'P0 negligible such that for all p E P0 : if x C is a local mini-
_ _ m  × k

mizer for (S(p)) there exists (y,z) E + x R satisfying SSOC.

Of course, this result can be slightly improved in the manner of

Corollaries 1 and 2.
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V. Comparison with the classical conditions.

For problems of the form (Q) we have seen that under mild

assumptions, the classical strong conditions

(SC) i) x is feasible for (Q).

ii) Vf(x) + lyi7gi(x) + iz.Vhj( ) = 0.

iii) Strict complementary slackness: yi > 0 <=> (X) = 0.

iv) The gradients of the active constraints, i.e.

{Vgi(x) : E I+} u {Vhj(x) : j=l,.- ,k} form a

linearly independent set.

Rn
v) For any E R satisfying ; 0,

Vgi(x) = 0 viE I+, and -Vh (x) = 0, j=l,-'-,k,3.3

we have [V 2f(x)+ lyiv2 gi(x)+jzV2 hj (x)] > 0

are generically necessary for optimality in families of problems

containing (Q) (cf. Theorems 1 and 2), and that for problems of

the form (S) (i.e., families with fixed cyrtohedron constraints),

the more general conditions SSOC are generically necessary for

optimality.

Locally, the fixed set C can be represented by inequality and

equality constraints; if (G ,H,,U) is a local representation for C,

then C n U = {x , U : GE(x) 0, (, E A, H (x) = 0, E B}. So, at least

locally, (S) is equivalent to a problem (Q') of the type (Q) (i.e.,

without "fixed" constraints):
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(Q') min f(x) subject to gi (x) 5 0, i ,

h (x) 0, j = l,...,k, G (x) 0, c A,i cx

H (x) = 0, 5 E B.S

It is natural to ask what the relationship is between the conditions

SSOC for (S) and SC for (Q').

In most cases, the two sets of conditions are essentially

n m A k R
equivalent in the following sense. If (x,y,az,b) c R x R+ x R+ X R x R

satisfies SC for (Q'), then (x,y,z) satisfies SSOC for (S). If
, n  RM Rk

(x , z) x x R satisfies SSOC for (S), then it is possible to

find a E R+ and bc R such that (x,y,a,z,b) satisfies SCi, ii, iiJ

-nd for any such a and b, SCv will automatically hold for (Q').

However, SCiv may fail. For example, if C is a four-sided pyramid

3in R with apex x, SCiv can never be satisfied for (Q') because no

set of four vectors in R can be linearly independent. However,

SSOCiv can (and usually will) be satisfies at x. In fact, (x,y,z)

will satisfy SSOCiv if and only if the projections onto L c(X)

of the gradients of the (nonfixed) constraints active at x are

linearly independent. But Lc(x) = {0) in this case, so SSOCiv

merely says that there are no active constraints at x. Of course,

one would expect the generic conditions to assert this. If k> 0,

one would expect the apex of the pyramid to be a minimizer with

probability zero. If k = 0, it is not unusual that the apex should

be a minimizer, but one would expect one or more of the inequality

constraints to be active there only with probability zero.
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In the most common cases, such as C = Rn , the set C will be

expressible as the set of points which satisfy a finite number of

equality and inequality constraints with linearly independent

gradients (cf. section III, example (d) under "examples of cyrto-

hedra"). Then, the two sets of conditions are essentially the same.

The main difference is that in the SSOC formulation, no multipliers

are associated with the constraints defining the cyrtohedron.

We also remark that the SSOC formulation suggests what the

generic conditions should look like if we gerneralize them to a wider

class of fixed sets C. Consider, for example, the set

C = {x= (x I1 x 2 ,x 3 ) :R3  x 1 and x1 + x 2 + x 3

Because no local representation exists for C near x = 0, C is not

a cyrtohedron. But, like a cyrtohedron, C can be partitioned into

"faces" (four in this case) that are submanifolds, and Nc (x) ind

L c(x) have obvious meanings, so the conditions SSOC, as stated above,

are still meaningful. In fact, C has all the properties that are

required for our proof of the genericity of SSOC. For such a set C,

it would be impossible to reformulate the problem (S) as a problem

in the form of (Q'), so the old conditions SC have no bearing here,

although the new conditions SSOC would apply and can be shown to

be generically necessary for optimality. We do not know if there

is a "natural" broader class to which our results apply. The above

example suggests conditions should be generic for sets C that look
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(in some sense) locally like the intersection of a cone with a

neighborhood of the origin. One possible class would be those

sets C such that each x E C has a neighborhood U such that for some

diffeomorphism t, and some closed convex cone K, (x) = 0 and

¢(CriU) = (U)n K. For this class, the proof of the genericity of

the above conditions does indeed go through However, this is not

as broad a class as we would like; it does not seem even to include

the class of cyrtohedra.
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0. Introduction

One of the nice features of convex optimization is the link

with "monotone" mappings. Due to this, convex problems can be

rephrased -s "variational problems", often resulting in consid-

erable simplification. This can be useful for theoretical

reasons, by emphasizing when the central justification for a

proof or procedure is the monotonicity of the subdifferential.

For example, Rockafellar [7,81 has exploited the link between

monotone mappings and saddle functions to unify and simplify

the existing theory of multiplier methods in convex programming.

It is the aim of this paper to show that a concept closely

related to monotonicity, e.g. "submonotonicity", also plays a

natural role in the analysis of nondifferentiable, nonconvex

problems. We will do this by demonstrating how properties of

nondifferentiable functions can be related to monotone-type

properties of their Clarke subdifferentials.

Our most important result appears in section IV, where a

complete characterization is obtained, in terms of properties

of the Clarke subdifferential, for the class of "lower-C
I '

functions, that is functions that arise by taking the maximum

of a compact family of C 1 functions. It is shown that these

functions are precisely those locally Lipschitz functions whose

Clarke subdifferentials are "strictly submonotone".

In section III, some implications of the submonr :onicity

property are developed, and several equivalent characterizations
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are given. This concept is then contrasted with properties that

have been discussed by other authors. Among these are regularity

in the sense of Clarke [2], quasi-differentiability in the sense

of Pshenichnyi [5], lower semi-differentiability in the sense of

Rockafellar [9], and semismoothness in the sense of Mifflin [4].

We wish to thank Professor Rockafellar for sharing many

valuable insights with us.
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I. Notation

Rn denotes Euclidean space with the usual inner product

x-y = <x,y> = JxiY i . The closed unit ball in Rn is denoted

by B = {XE Rn xi 11.

If Kc Rn is a compact convex set, then K is the support
K

function of K, defined by TK(u) sup{<u,x> : xc K}. For any

uE R n , we let K {XE K <u,x> = I(U)}.u K
n n

The notation T : R R indicates that T is a set-

valued mapping. T is closed provided the set {(x,y) : yE T(x)}

- nis closed. T is locally bounded if for every xE R there is

e > 0 and R > 0 such that yE T(x), Jx-xj < E implies jyl < R.

We will say the sequence (xn) converges to x in the

n
direction UE R written x --+ x, provided either x n- xn u n

X -x
and u = 0, or u / 0, n u and x / x for all n.

If f : Rn R, the directional derivative of f at x

(when it exists) is

f'(x;u) = lir f(x+tu) - f(x)

t+0 t
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II. Submonotonicity

, n  Rn
In this section, T : R denotes a convex-valued closed

n
multifunction. T will be called submonotone at xE R provided

lim inf <y' - v, x' - X>
x'x, x' x Ix, - x

yET(x), y'ET(x')

(T is trivially submonotone at x if T(x) = p). T is directionally
• . Rn

upper semicontinuous (d.u.s.c.) at x provided that for all uE R

whenever xk -- x and E T(Xk) for all k, then for every E > 0
k u Yk Tk)

there exists k0 such that

T(xk) c !(x)U + B k

For u = 0, this is automatically satisfied since T is assumed

to be closed. If T is locally bounded near x then T is d.u.s.c.

at x if, and only if, for all u 3 0, whenever x-- x and
kF U

T(xk) -; Yk - y' then yE T(x)u . If T is submonotone [respectively,
nU

d.u.s.c.] at all xE R then T is submonotone [resp., d.u.s.c.].

(2.1) THEOREM. Let T R - Rn be locally bounded near x (as

is the case if T = ;f with f locally Lipschitz). Then T is

d.u.s.c. at x if, and only if, T is submonotone at x.
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Proof. If T is not submonotone at x, there is £ > 0 and there

are sequences xn  X, x n X, y E T(x n) Yn' E T(x), such that

<x -x, yn-yn'>
X n 1 -E < 0, Vn. We may clearly assume x - x forIx n X1 n u

nU

some u 9 0, and since T is closed and locally bounded, that

Yn " ye T(x) and y n' - y' E T(x) Then YT(x) (u) > <u,y'>- E <u,y>,

so T is not d.u.s.c.
Suppose that T is submonotone at x. Let xn uX, u 0,

Yn E T(Xn), Yn n- y. Since T is closed and locally bounded,

y E T(x) and we will be done if we can show yE T(x) . If zc T(x),

(y - z)'u =li <Y n - z, xn - x>
Ixn - x1

since T is submonotone at x. Since this holds for all z ' T(x),

y.u x (u), showing that T is d u.s.c. at x. I'T(x) '

of course if f : Rn - R is convex, 3f is monotone, and hence

submonotone. The fact that ;f is directionally upper semicontinuous

is proved by Rockafellar [6, Theorem 24.6].

The multifunction T : R Rn will be called strictly submon-

otone at x provided

liminf <Xl - x 2 ' yl - Y2 > >

x.+-*x, i=1,2ll

YiET(xi), i=1,2

Strict submonotonicity clearly implies submonotonicity.
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Ucxt, wc state a '.haractezi-ation of strict submo 1notonicity

similar to the one pj::ovided in Theorem 2.1 for submonotonicity.

The proof is similar; so it has been omitted.

(2.2) THEOREM. Let T : R Rn be locally bounded near'x.

Then T is strictly submonotone at x if, and only if, whenever

x n x, x' X n 3 X', yn T(x n ), y E T(x'), Yn Y y'n III,

xn -X' - 0, one also has v-y' v-y.
n n v
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III. Lipschitzian functions

Next, we turn our attention to a particular class of multi-

functions, namely those that are the Clarke generalized gradient

mapping [11 for a locally Lipschitz function f : R R. Thus,

if T = ;f, we ask what the subn',onotonicity of 'f implies about f.

If f is locally Lipschitz, the Clarke derivative of f is

the function

f0 (xu) = u sup f(x+h+tu) - f(x+h)
fot~u irou t

tyl0

h-0

fo(x,') is a continuous sublinear function which is the support

function of the compact convex set Df(x) called the Clarke general-

ized gradient of f at x. For every uvc R n  f 0 (x;), being a

finite convex functior, possesses a finite directional derivative

at u in the direction v which we denote by f0 (x;u;v). Alterna-

tively, we could define f 0 (x;u;') to be the support function of

;f(x) Clearly f 0 (x;O;.) = f 0 (x;.). Let us also define

Ilim sup f(x+h+tv) - f(x+h) if u / 0

h - 0 t
U

f (x;u;v) = t/lh+O

f 0 (x;v) if u = 0

Clearly f (x;u;v) < f0 (x;v). Also, f (x;u;-) is sublinear, so

f (x;u;.) is the support function of some subset of af(x). As
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we shall see., the cae where that subset is 3f(x) correspondsu

to the case where f is submonotone or, equivalently, d.u.s.c.

To see that f (x;u;-) is sublinear, note that

f (x;u;v+v 2 ) lim sup f(x+h+t(vl+v 2 )) - f(x+h)
t

sup~1 f(x+(h+tv l )+tv 2 ) - f(x+(h+tv I ))
t

+ 14M sup f(x+(h+tv I )) - f(x+h)
t

f (x;u;v2) + f (x;u;v I )

(3.1) THEOREM. Let f : R R be locally Lipschitz. 3f is

d.u.s.c. at x if, and only if, fl (x;u;v) = f (x;u;v) for all u,vERn

Proof: (<=) Let u / 0 (if u = 0, the assertion is trivial),

Xk -' x, @f(xk) y k y. To show 3f is d.u.s.c., it must be
Rn

demonstrated that YE f(X) u Fix an arbitrary VE R Then

f(Xk+h+tv) - f(xk+h)v.y k _< f0 (Xk;V) = lim supt
h-0

t~tt+0

so hk, tk>0 can be found with

< f(xk+hk+tkv) - f(xk+hk)

kk tk

and max {tk' l hkl} - Ixk - xl/k
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Hence,

Vy = lim vYk
k

~limsun f(Xk+hk+tkv) - f(xk+h k

k tk

< f (x;u;v),

where the last inequality follows from the fact that x k - x + hk

and tk/Ixk-x+hk 1+0. But f- (x;u;v) = if0 ,x;u;v) by assumption, so

v-y 5 f*(x;u;v) = T (v) for all v, which implies that v 3f(x)
URn"-

(=>) Fix u / 0, vER First we show that fo(x;u;v) 2! f (x;u;v).

Pick sequences h ) 0, t /!h I+0such thatn u n n

f(x+h +tn v) - f(x+hn)
f (x;u;v) = lrn n 4

n n

By the mean-value property [Lebourg, 31, there is, for each n,

y n E f(x+h +c t nv) with 0 < c < 1 such thatnn nn n

f(x+h +tv) - f(x+hn)n nvv'Yn = tn
n

Without loss of generality, we can assume that y n y for some

yE 3f(x). Since ;f is assumed to be d.u.s.c. at x, we have

yE f(x) u  Hence f (x;u;v) = lim vy n = v-y f* (v) =

f*(x;u;v), as desired.
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To prove the opposite inequality, fix u / 0, v R , wE 3f(x) u ,

and we will show w-v :- f (x;u;v). From this, the desired inequality

follows by taking the supremum in w.

By d.u.s.c., we may find 6n > 0 (n=l,2,- --) such that

0 < 6 <- 6 impliesn

af(x+6(u+-v)) c af(x) + Bn 1 n
n

Clearly we may assume 6 0. Let x x + 6 (U+-v) and choosen n n

Yx and yn f f (xu + - B. Sincen n h nf x n "x n and y n

n
y E ,fx we may find t > 0 and h !E R such that

n n n w a n

f(xn+hn+t nV) - (x+h n)
vn n t n

n

max{lh n 1, tn } < Ixn  xj/n
n n n

Next, we will show that lim inf y *v Z w-v. Since xn  h -u x
n n n Un

and tn/I xn x+h n10, this will imply

Wi f(xn+h +tv) f(xn+hW* w-5< lim inf nnn nn

n n

5 f(x;u;v)
/

which is the desired result.

For each n, choose n f(x) such that IYn -Y'I <U+ 1vn -" n- 2
UnV

,Then
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Yn(u+ I ) = v)

n.u v n y'.(u+-v) + (yn-y)(ut-v

n n n n

> w. (u+iv) U1 ul
n

(because wE f(x) , YnE f(x)1 )

n

> Yn-u + -w-v - u+
n n

n

(because wE af(X)u, Y' E f(x))

1 fl
YnU + - w-v- (iui+Iu+-I)

n

(because -n-n ). So
n

Yn. >v w.v - n.(IUI+iu+ i)

and hence lim inf y n-v 2 w-v, as desired.

Combining our results so far, we obtain the following:

(3.2) COROLLARY. If f : Rn - R is locally Lipschitz, then the

following are equivalent

i. af is submonotone at x

ii. 3f is d.u.s.c. at x

iii. f (x;-;.) = fo(x;-;-)
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Now that we have acquired a better understanding of the

submonotonicity property of af and what it implies about f,

a logical question to ask next is: Just how strong is this

property? In other words, if we take a look at "regularity" or

"subdifferentiability" properties that have been studied for

nondifferentiable functions by other authors, then which of these

imply or are implied by the submonotonicity of 3f?
Rn

A locally Lipschitz function f : R n- R is said to be

semismooth at xE R [Mifflin, 4) provided that x x andk u

YkE af(xk) imply that <UYk> - f'(x;u).

(3.3) PROPOSITION. If 3f is submonotone at x then r is

semismooth at x.

Proof. If Xk x and YkE af(xk) then every subsequence

of (yk) has a subsubsequence converging to some point in 'f(x)u

by directional upper semicontinuity. Hence <u,yk k l f(x)(u).

By Proposition 3.5, Yf(x)(u) = f'(x;u). a

The function f(x) = -lxi is semismooth, but af is not

submonotone at x = 0, so the converse of 3.3 is false.

Following Pshenichnyi [5], let us say that f is quasi-differ-

entiable at x if there is a closed convex set K such that

f'(x;-) = YK(.). The function f(x) = -jxj is not quasi-differ-

entiable, so it is natural to ask whether every locally Lipschitz

function which is both semismooth and quasi-differentiable has
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a submonotone subgradient mapping. The answer is negative.
R2

Consider the function f : R R defined as follows:

0 if a ! 0
a2/ 2

f(a,b) = /4 if a > 0, IbI a a /2

IbI - b 2/a2  if a > 0, IbI < a 2/2

Then f is differentiable at all points where either b 3 0

or a 5 0. At all points x = (a,0) with a > 0, f is quasi-

differentiable since f'(x;-) = TK( -) with K = [(0,-I),(0,i)].

f is also locally Lipschitz, and it is not hard to check that

f is everywhere semismooth. However, af is not d.u.s.c. since

9f(0) = K but (0,0) E 3f(0,b) for all b / 0.

A locally Lipschitz function f : Rn - R will be called

regular at x [Clarke, 2) provided that f'(x;.) = Tf(x)(-).

Clearly this is a stronger property than quasi-differentiability.

The function f of the previous paragraph is not regular at 0,

so it is natural to ask whether semismoothness plus regularity

implies the submonotonicity of 3f. This time the answer is

affirmative:

(3.4) PROPOSITION. 3f is submonotone at x if, and only if,

f is semismooth and regular at x.

Proof. Suppose f is semismooth and regular at x. If x -- x

n u

(u ' 0), Yn 6 3f(x)' and yn - y then yE 3f(x) a'd
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<yu> = lim <Y nU>

= f' (x;u) (by semismoothness)

= T f(x) (u) (by regularity)

So yE ;f(x) . Hence ;f is d.u.s.c., hence submonotone at x.

The other direction follows by Propositions 3.3 and 3.5. 3
Rn

Rockafellar [9] has defined zc R to be a lower semigrad-

ient for f at x if

rn irnf f(x+tv) - f(x) >n> VuER nlmift > <U,Z> VER

V+U
t+o

If such a z exists, f is lower semidifferentiable.

(3.5) PROPOSITION. Let f R n R be locally Lipschitz, af

submonotone at x. Then

lim f(x+tv) - f(x) = () V ' n
tt t()
v,-u

In particular, f is lower semidifferentiable at x and f(x)

is the set of lower semigradients. Also, f is regular at x.

Proof. If u = 0, this follows easily from the fact that f

is locally Lipschitz, so suppose u 3 0. Let t +0, v n -u. For
n n

each n, there is cn E (0,I) and yn e af(X+Cnt n vn uhta

"-- ----- --- -- m mm m mmmm mn n n
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f(x+t v ) - f(x)

t n  =YnV n

Since x + c t v -- + x, we must have yn.u T ;f (u). Thusnnn u f(x)

f(x+t vn ) - f(x)
lim n t = li ra Yn V n
nt n

= lim y u = 1T f(x) (u)

Hence f is lower semidifferentiable and Df(x) is the set of

lower semigradients. It is then obvious that f is regular

at x. i

The converse of 3.5 is false: f(x) = x2 sin 1 isx
locally Lipschitz and differentiable but Df is not submonotone

at x = 0.
and lower semidifferentiabl

It is also possible for a function to be regular but for

3f not to be submonotone. Consider, for example, any function

f : R - R satisfying the following properties:

1 1 1 1
(i) f(x) = x -- for x= , = I , -,

x

(ii) f' exists and is decreasing on n

f+(n+I) 1, and f'l(k = 0,. n=2,3,4,---

1 1
(iii) f(x) = for x ? 2 and f(0) = 0

(iv) f(-x) = f(x) for all x.
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Since lxi - x 2  f(x) ! lxi for all x, f'(O;u) = lul for all

u. Also, af(0) [-1,1] so f is regular at 0. But ;f

is clearly not submonotone at 0. Note that the behavior of

f is nice at all points x 0.

Since the property of strict submonotonicity is central to

this paper, it is useful to mention an example of a function
R2 R2

f : R R such that ;f is submonotone everywhere, but is

not strictly submonotone. The function is

jYj if X :5 0

f(x,y) = lyi-x2  i x > 0, i I t x 2

x -y if x 0, iYl : x

2x
2

It is easily checked that f is locally Lipschitz, that 9f is

everywhere subrionotone, and Df(0,0) = [(O,-l),(0,i)1. If we

le~tx ' = (=,n), yn= 1), Yn = (2,I)1 n=l,2,..-n _(!' ,= 2 =(n'-2'Y
len nn , ,x

and u = (1,0), then xn 1u nx -U 0, y n Ef(x n and

YE 3f(x') for all n. However,
nn

<xn -x, y-y'>

-n n n = 2 for all n

so f is not strictly submonotone.
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IV. Lower-C functions

In this section, we characterize the class of "lower-C1

functions" in terms of their Clarke gradients. f : - R is

lower-C 1 provided f can be represented locally as f(x) = max g(x,s),
sES

where S is compact and g and V xg are continuous jointly in x

and s. In Theorem 4.9, it is demonstrated that a locally Lip-

schitz f is lower-C 1 if, and only if, 3f is strictly submonotone.

The term "lower-C function" was suggested to us by Professor

R. T. Rockafellar.

. n

(4. 1) 11111A. Let f : Rn -R be locally Lipschitz, x,y E . For every

E > 0, there are neighborhoods U of x and V of y such that if

x'EU and y'EV, then Lf(x') (y) - *f(x (Y') F_

Proof. Let K be a Lipschitz constant for f on a neighborhood

U of x. Then 3f(x') c KB for all x' E U, and it follows that K*|
is a (global) Lipschitz constant for Taf , (-). Take V to be

the open ball of radius E/K centered at y. I

(4.2) LEMA. Let f : R be locally Lipschitz. Then

(4.3) lim inf f(x'+ty) - f(x'Y)_ 0, y R

t+O
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Rn

if, and only if, for any compact Kc R, and any c > 0, there is

a neighborhood U of x and A > 0 such that

(4.4) f(x'+ty') - f(x') - *t af(x') ( ' > -

whenever x' E U, y' E K, 0 < t < A.

Proof. Assume 4.3 holds, and fix Kc Rn and c > 0. Since f is

locally Lipschitz, 4.3 implies

f(x'+ty') - f(x') n f-
lrn inf t '~a ()y) 0, Vy ERx , *x t 9 x ' '

y'y

Y,-
t+0

This, and Lemma 4.1, imply that for each y E i we may find neighboi-

hoods U of x, V of y, and X > 0 such that

T f(x') (y) - Tf(x') (y') >-  -:/2

and

f(x'+ty') - f(x') - (Y) >_ -/2
t af(x') () -/

whenever x' U Ey, y' E V, and 0 < t < X . Pick a finite subcover
y y

V ,''-,V for K, and let U = U n ... n U and A = min{ ,l ..- ,

For any x' E U, y' K, and t E (0,), let i be such that y' c V

and we get
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f(x'+ty') - fx') *
t T af(x') (Y)

( xt ' - O f(x') (yi)) + -.f(x') (Yi - (x ) (y '

-E/2 - /2= -E

as desired. The opposite direction of the lemma is obvious.

(4.5) PROPOSITION. If f : - R is locally Lizchitz, then

af is strictly submonotone at x if, and only if, 4.3 holds.

Proof. (=>) If y = 0, the assertion is trivial. Without any

loss of generality, we may assume that lyl = 1. Fix e > 0.

Since f is strictly submonotone at x, there is r > 0 such thzt

<Xl-X 2 ,yl-y 2 >

whenever lxi - xl < 2r, yi E 3f(x i ) for i = 1,2, and x1 d x2 .

Let x' and t be chosen so that Ix' - x1 < r and 0 < t < r. We

will complete the proof by showing that

f(x+ty) - f(x') Tt - f(x,) ( ) a -

Choose any ylE 3f(x')y. By the mean-value theorem of Lebourg [3 ],

we may find sE (0,t) and y2 E @f(x'+sy) such that f(x'+ty) - f(x') =

t<yy 2 >. Letting x1 = x' and x2 = x' + sy, we have
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f(x'+ty) - f(x') - (y) = <y y2Yl>
t 9f(x') '

<x2 -x1 ,y 2 -y> 

-x1

(<=) Next, suppose 4.3 holds, and let c > 0 be given. By Lemmna

4.2, there is a neighborhood U of x and X > 0 such that

f(x'+tu) - f(x') *
t Df(x')

whenever x' E U, Jul 1 1, and 0 < t < X. We may also assume that

U is small enough so that Iz - z' I < X for all z, z' E U. Fix

x. E U, y 1E f(xi) for i=l,2, with xI  x2 . Let t =x 2 -xlI

and u = (x 2 - x1 )/t. Then

<X1-X 2 0,Yl-y2 >

1x -uy>- <-u,y 2 >Ix 1-x21

--3 f(x 1 ) (u) - 3f(x 2 ) (-u)

f(xl+tu) - f(x) -

t Of(x I )

f(x 2 -tu) - f(x 2  *
+ t- '• x)(-u)t ' f(x 2 )

E

which shows that 9f is strictly submonotone at x.
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(4.6) LEMNMA. Let f : n- R be locally Lipschitz, let C and K

be compact sets in Rn , and suppose that 9f is strictly submonotone

on C. Then

lim inf f(x+ty) - f(x) * * 0
XEC t f(x)

yeK
t4O

Proof. Let c > 0 be given. By Proposition 4.5 and Lemma 4.2,

for each xE C, there is A > 0 such that
x

f(x'+ty) - fx') *
t af(x') ( y )

whenever Ix' - x1 < Ax y, K, and 0 < t < A x . Let xl'f..'xr E C

be such that for every XE C we have Ix - xi < X for some i.
1

Let A = min(x,--,A )x. Then for any xE C, yE:K, we have

f(x+ty) - f(x) - T (Y) -

t 3f(x)

whenever 0 < t < A. I

(4.7) LEMMA. Let V(t) be real-valued, defined for t > 0 suffi-

ciently small, such that lim P(t) = 0. Thcen there is a continu-
t-0

ously differentiable function a(t) defined on [0,a] for some

a > 0 such that
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c(O) = C'(0) 0

a(t) 2! t (t), Vt c (0,a]

Proof. Let a > 0 be such that is bounded above on (0,2a],

and let ak = a/2k , k=0,1,- . If B is the infirum of all affine

functions Z : R - R which satisfy £(ak) >_ (t) for all tE (0,2ak

and all k=0,1,2,-.- then the following properties are easily

checked:

B is continuous, concave, nondecreasing on [0,a]

B(0) = 0

B - 4, on (0,a]

B is affine on [ak+l ak], k=0,1,2,.--

Also, 3+, the right derivative of B has these properties:

B' is finite, nonnegative, and nonincreasing on (0,a)

' is constant on [ak+ l ,a k ), k=0,1,2,-.-

is integrable on (0,a].

This last assertion is proven as follows. Whenever 0 < u < v < a,

v
B(v) - B(u) = B B+(s) ds

U

(cf. Rockafellar [6, 24.2.1]). Since B4 0 and B is continuous,
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a v
f 8+S) as : lim f +(s) ds = (a) - 6C0) <

0 u-)0 u
v-*a

t
so a is integrable. Note that since (O) = 0, S~t) = f 0+(s) ds

0
for all tE [0,a].

For each k=l,2,.--, pick ck such that

1(a + a ) < c < a
f a k+l Ck k

(ak - ck)($+(ak+l) - B+(ak)) < a

Define p : (0,a) R to be the function that agrees with 1 + B+

on the intervals a k+lC k I (k=l,2,---) and on [al,a 0 ) , and is

affine on the intervals [ck,akI (k=l,2,.--). Then V is continuous,

nonnegative, and nonincreasing on (0,a) and

t
f P(s) - a'(s) ds 0 for all k=0,1,2,---,f - B+
ak+l k]

Since 0 P -< -' + 1 and + is integrable, it foll- that i is

integrable. Then for all tE [0,a],

t t
f p(s) ds a f a+(s) ds = (t)

0 0

t
Define a(t) = tf P(s) ds for all tE [0,a]. Clearly,

0
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a is continuously differentiable on (O,a].

L(0) = 0

a (t) - t¢(t) for t E (0,a]

It remains only to show that a is continuously differentiable at
t

0. We have a'(0) = lira(t) lir f w(s) ds = 0. Also, for t > 0,t-0+ t t-0 0

t

c' (t) = p i(s) ds + tp(t)

0

t
= f (p(s) + 1.(t)) ds

0

t
< 2f P(s) ds (since p is nondecreasing)

0

so lir c'(t) = 0. U
t-0

R n n
(4.8) PROPOSITION. Let f :n - R be locally Lipschitz. If

;f is strictly submonotone then for every compact Cc Rn, there

is a continuously differentiable a [O,a] - R such that

a(0) = a'(0) = 0 and

f(x + ty) > f(x) + tT ;f(x) (y) - a(t)

whenever xE C, yj = 1, and 0 < t !5 a.
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Proof. For t > 0, define

= -inf min f(x+t y ) -f(x) T (y), )t _< t  ,t i f x y

xEC

Then 4 - 0 and by Lemma 4.6, lir p(t) = 0. By Lemma 4.7, there
t-0

is a real-valued function a(t) which is continuously differen-

tiable on [O,a] for some a > 0 such that a(O) = a'(0) = 0 and

a(t) t (t) for all tE (0,a]. It follows that f(x + ty) - f(x) +

t x (y) - a(t) whenever x C, IL = 1 and 0 < t a. U

(4.9) THEOREM. Let f : R- R be locally Lipschitz. 3f is

strictly submonotone if, and only if, for every XE Rn there is

a neighborhood U of x, a compact set S and a continuous function

g : U x S - R such that xg(x,s) exists and is continuous in

(x,s) and such that

f(x) = max g(x,s) VXE U
SES

n .
Proof. (=>) Suppose f is strictly submonotone, and fix XE R

By Proposition 4.8, there is a > 0, and a C function a : [0,a] R

such that a(O) = a'(0) = 0 and

f(x+y) - f(x) + < ,Y> - al yj
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whenever Ix-xl 1, y[ <- a, and 9 f(x). Let b = min{l,a/2}.

Then

f(x) - f(x') + <x-x',{> - a(Ix-x'l)

whenever Ix-x - b, Ix'-xl- b, and E f(x'). Let U =

{x : Ix-xI < b} and S = {(x',,) : lx'-xI -< b, E C'of(x')}. If

we define

then g has the desired properties.

(=>) Fix xE Rn , let U, S, and g be as indicated, and let

K-CU be a compact convex neighborhood of x. By.compactness,

Vxg(x,s) is uniformly continuous on K x S. So, defining for t > 0

n(t)= sup Vx g(Zs) - V xg(Z',s)l
Z,z'cK

SES

Iz-z'l<st

we have lim n(t) = 0. By Lemma 4.7 there is, for some a > 0,
t,0

a C1 function a : [0,a] - R such that c(O) = a'(0) = 0 and

a(t) - tr)(t) for all tE (0,a].

Fix x, x' E K such that x 3 x'. For each s S S, by the mean-

value theorem, there is x" E K on the line segment (x,x') such

that g(x',s) - g(x,s) = (x' -- x)V xg(x",s). Then
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[g(x',s) -g(x's) - (X'-x)''v g(x,s))/jx' - X

(V xg(xITs) - g(x,s)) A, xl

rOI - X0) 2 -rI(Ix' - xi) 2: - cLIix. - xl)
Ix, - Xl

Hence, for all S E S,

g(x',s) >-g(x's) + Wx - X)7v g(x's) - c(lx' - XI)

Let CE 3f(x) be arbitrary. By Clarke [1, Theorem 2.11, we may

find s 1 .., k ES and numbers X lI..x k such that

x. 0, Ix. =1 g(x's.i) = f, W

Then

~(g(xis) + (x'-~x).V g(xiS)-

ct(lx'-xl))

=fix) + (x'-x)-c - ct(jx'-xj)



Since this holds for all ;E f(x), we have shown that for all

x, x' c K with x x', we have

f(x') - f(x) + 'fT x (x' - x) - a(lx' - x I )

It then follows easily by Lemma 4.5 that f is strictly submono-

tone at every interior point of K, and hence in particular at x. 3
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